
Advanced Functional Programming TDA342/DIT260

Patrik Jansson, Jonas Dureg̊ard

2014-08-25

Contact: Patrik Jansson, ext 5415.

Result: Announced no later than 2014-09-12

Exam check: Mo 2014-09-15 and Tu 2014-09-16. Both at 12.45-13.00 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: 24p, 4: 36p, 5: 48p, max: 60p
GU: G: 24p, VG: 48p
PhD student: 36p to pass

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

1

Problem 1: DSL: design an embedded domain specific language(25 p)

This assignment is about design and implementation of an embedded language for “ASCII art”.
The language should be compositional, that is, enable building complex images by combining
simpler images. Here is one example of what the language should be able to express (but you need
not implement the rendering).

+-+ +--------+

|1| |+---+ |

|7| ||hi!| |

|3| |+---+ |

|8| | |

+-+ |+------+|

||Patrik||

|+------+|

+--------+

Typical components are: horizontal text, vertical text, framed boxes, relative placement (above,
beside, etc.).

(a) Design an API for the above embedded language. This should consist of: suitable names(5 p)
of types, names and type of operations for constructing, combining and “running”. For each
operation, describe briefly what it is supposed to do. Keep the role of each operation as simple as
possible but add enough combinators to allow describing the picture above. (Note that this part
does not ask for any implementation code, only names and type signatures.)

Implement the example above in terms of your API.

(b) Which of the operations in your API are primitive and which are derived? Give definitions of(5 p)
the derived operations in terms of the primitive operations.

(c) What properties (or laws) do your functions have? Mention at least three non-trivial such(5 p)
ways in which your functions interact.

(d) Describe what a shallow implementation could look like. Give a type definition and describe(5 p)
(in words or code) what each of your primitive operations, and your run function, would do.

(e) Describe what a deep implementation could look like. Give a type definition and describe (in(5 p)
words or code) what each of your primitive operations, and your run function, would do.

2

Problem 2: Spec: use specification based development techniques (15 p)

Below is an attempt at a QuickCheck test suite for qsort :: Ord a ⇒ [a]→ [a].

prop minimum xs = head (qsort xs) minimum xs

prop ordered xs = ordered (qsort xs)
where ordered [] = True

ordered (x : y : xs) = x 6 y && ordered (y : xs)

prop permutation xs = permutation xs (qsort xs)
where permutation xs ys = null (xs \\ ys) && null (ys \\ ys)

(a) Find and correct at least one bug per property in the test suite. (5 p)

(b) Write a main function which tests the three properties (for lists of integers) using QuickCheck. (5 p)

(c) Write a sized generator (sizedList :: Gen a → Gen [a]) for random lists. Make sure the list (5 p)
length is random (but bounded by the current size).

Problem 3: Types: read, understand and extend Haskell programs which
use advanced type system features (20 p)

(a) Define a GADT (Generalised Algebraic DataType) Expr t representing the well-typed terms (5 p)
of a simple expression language with character and integer literals, function application and the
built-in operations Nil :: Expr [a], Cons :: Expr (a → [a] → [a]), Length :: Expr ([a] → Int),
Replicate :: Expr (Int → a → [a]). Note that there are no variables in the language.

(b) Define a function eval :: Expr t → t to compute the value of an expression. (5 p)

(c) Implement the derived operation stringLit ::String → Expr String (with no change to Expr). (4 p)

(d) Extend the language with numbered variables representing strings and call the new language (6 p)
Expr2 with evaluator

eval2 :: (Name → Maybe String)→ Expr t → Maybe t
type Name = Int

What is changed in Expr2 compared to Expr and in the function eval2 compared to eval?

3

A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

Monoid laws (variables are implicitly quantified, and we write ∅ for mempty and (�) for mappend):

∅ �m m m �∅
(m1 �m2) �m3 m1 �(m2 �m3)

Example: lists form a monoid:

instance Monoid [a] where
mempty = []
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
ask :: m e -- Get the environment
local :: (e → e)→ m a → m a -- Change the environment locally

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)
execWriterT :: (Monad m)⇒WriterT w m a → m w

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
tell :: w → m () -- Output something
listen :: m a → m (a,w) -- Listen to the outputs of a computation.

State monads

type StateT s m a
type State s a
runStateT :: StateT s m a → s → m (a, s)
runState :: State s a → s → (a, s)

class Monad m ⇒ MonadState s m | m → s where
get :: m s -- Get the current state
put :: s → m () -- Set the current state
state :: (s → (a, s))→ m a -- Embed a simple state action into the monad

4

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
throwError :: e → m a -- Throw an error
catchError :: m a → (e → m a)→ m a -- In catchError x h if x throws an error,

-- it is caught and handled by h.

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (&&), (|), not , ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x)
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a] → Gen [a]
vector :: Arbitrary a ⇒ Int → Gen [a]
arbitrary :: Arbitrary a ⇒ Gen a
fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a]

5

