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Problem 1: Types: read, understand and extend Haskell programs which
use advanced type system features

You have seen the standard Haskell definition of Monad in the course. Let’s repeat the core of it
here, and call it Monad1 to be able to differentiate between it and another version below:

class Monadl m where
return ::a — m a
(>=) sma—(a—mb —>mb

In this task, you will show that another definition is just as expressive. It uses join as primitive
instead of bind (>>=), and it has a Functor constraint. We will call this class Monad2:
class Functor m = Monad2 m where
return ::a — m a
join =m(ma)—ma
(a) Without using do-notation, implement bind using this new monad definition:

(>=):: Monad2 m = ma— (a—mb)—mb
(>=) =7

Hint: Every Monad2 is also a Functor!/
(b) Implement join! using the standard monad definition:

joinl :: Monadl m = m (m a) = m a
joinl =7

Again, don’t use do-notation.

If Monad2 was how monads were defined in Haskell, the instances could also look a bit different.

(c) Finish this Maybe instance of Monad2 by implementing join:

instance Monad2 Maybe where
return = Just
join =7

Do it in this setting’s most straightforward way (i.e. don’t go via an implementation of (>>=)).

(d) Finish this State instance of Monad2 by implementing fmap and join:

newtype State s a = State {runState :: s — (a, s)}
instance Functor (State s) where

fmap =7
instance Monad?2 (State s) where

return a = State $ A\s — (a, s)
join =7

Again, do it in the most straightforward way for this setting.



Problem 2: Spec: use specification based development techniques
This problem continues the previous problem’s adventure about monads in terms of join.
Note: Even if you have not solved problem 1 you can still try to solve this problem.
The monad laws can also be expressed in terms of join, fmap and return:
Units: join o return = id = join o fmap return
Associativity:  join o fmap join = join o join
(a) What is the type of fmap return at the use site in the units law and what is the type of the
rightmost join in the associativity law?
(b) Now, consider this implementation of the writer monad:

instance Functor ((,) w) where
fmap f (w,a) = (w,f a)
instance Monoid w = Monad2 ((,) w) where
return a = (o ,a)
join (w, (w’',a)) = (wow', a)
Here, for brevity, we write @ for mempty and ¢ for mappend just as in the appendix. The notation
((,) w) is a partial application of the pair type constructor. For example, (((,) w) a) is the same
type as (w, a).

Show the above unit and associativity laws for this writer monad by equational reasoning.

Problem 3: DSL: implement embedded domain specific languages
This is a simple API for digital circuits of type C:

data ¢' -- To be defined
-- Primitive operations
inv =C—=C - inverter (“not”-gate)
ands = [C] = C -- “and”-gate with zero or more inputs and one output

delay :: C — C -- delay the output one step
-- Derived operations
ors = [C]—=C -- “or”-gate with zero or more inputs and one output

zor :C — C — C -- binary “xor”’-gate
false, true, toggle :: C
-- Run functions

run :: C — [Bool]

show :: C' — String
The run function should return an infinite list of booleans representing the logic outputs of the
circuit for all time steps. Here is a selection of the properties it should satisfy:

prop_inv i ¢ =run (inv ¢) i # run ¢!l

prop_delay0 ¢ = not (run (delay ¢) ' 0)

prop_delay i ¢ = run (delay ¢)!! (¢ +1) == run c!!'q

run true !l ¢

prop_true 1

prop_toggle i = run toggle ! i == (i ‘mod* 2 == 1)

(a) Implement the derived operations while keeping the type C abstract.

(b) Implement the type C, the primitive operations and run using a deep embedding.

(20 p)

(20 p)



A Library documentation

A.1 Monoids

class Monoid a where
mempty :a
mappend ::a — a — a
Monoid laws (variables are implicitly quantified, and we write & for mempty and (o) for mappend):
gom=m==moJ
(m1 <& mg) Sma == My <>(’ITL2 & ’ITL3)
Example: lists form a monoid:
instance Monoid [a] where
mempty =]
mappend s ys = s H ys

A.2 Monads and monad transformers

class Monad m where
return ::a — m a
(>=) sma—=(a—>mb)—-mb
fail  :: String — m a

class Monad m = MonadPlus m where
mzero ::m a
mplus::m a — ma—ma

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a — e — m a

class Monad m = MonadReader e m | m — e where
ask ::m e -- Get the environment
local :: (e = e) = m a — m a -- Change the environment locally

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a — m (a,w)
exec WriterT :: (Monad m) = WriterT w m a — m w

class (Monad m, Monoid w) = MonadWriter w m | m — w where
tell ::w — m () -- Output something
listen :: m a — m (a,w) -- Listen to the outputs of a computation.

State monads

type StateT s m a
type State s a
runStateT :: StateT s m a — s — m (a, )
runState :: State s a—s—  (a,s)

class Monad m = MonadState s m | m — s where

get::m s -- Get the current state
put s —m () -- Set the current state
state :: (s = (a,8)) = m a -- Embed a simple state action into the monad



Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a — m (Either e a)

class Monad m = MonadError e m | m — e where
throwError :: e = m a -- Throw an error
catchError ::m a — (e — m a) - m a - In catchError z h if  throws an error,
-- it is caught and handled by h.

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (A), (|), not, ...
(==>) :: Testable p = Bool — p — Property
forAll :: (Show a, Testable p) = Gen a — (a — p) — Property
-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop = prop — 10 ()

-- Measure the test case distribution:
collect :: (Show a, Testable p) = a  — p — Property
label  :: Testable p = String — p — Property
classify :: Testable p = Bool — String — p — Property

collect x = label (show x)
label s = classify True s

-- Create generators:

choose  :: Random a = (a,a) — Gen a
elements ::[a] — Gen a
oneof  :[Gen a) — Gen a
frequency :: [(Int, Gen a)] — Gen a
sized = (Int — Gen a) — Gen a
sequence ::[Gen a] — Gen [a]
vector  :: Arbitrary a = Int — Gen [a]
arbitrary :: Arbitrary a = Gen a
fmap 2(a—b)— Gena — Genbd

instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where

arbitrary :: Gen a

shrink  ::a — [a]



