
Advanced Functional Programming TDA342/DIT260

Patrik Jansson

2012-03-07

Contact: Patrik Jansson, ext 5415.

Result: Announced no later than 2012-03-27

Exam check: Th 2012-03-29 and Fr 2012-03-30. Both at 12.45-13.10 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: 24p, 4: 36p, 5: 48p, max: 60p
GU: G: 24p, VG: 48p
PhD student: 36p to pass

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

1

Problem 1: Spec: use specification based development techniques(30 p)

Instances of the MonadState class should satisfy the following four laws (where all unbound vari-
ables are implicitly forall-quantified and skip = return ()):

put s ′ >> put s put s -- put-put
put s >> get put s >> return s -- put-get
get >>= put skip -- get-put
get >>= λs → get >>= λs ′ → k s s ′ get >>= λs → k s s -- get-get

Consider the following implementation:

data S2 s a where
Return :: a → S2 s a
Bind :: S2 s a → (a → S2 s b)→ S2 s b
Then :: S2 s a → S2 s b → S2 s b
Get :: S2 s s
Put :: s → S2 s ()

instance Monad (S2 s) where {return = Return; (>>=) = Bind ; (>>) = Then }
instance MonadState s (S2 s) where {get = Get ; put = Put }

(a) Implement a run function runS2 :: S2 s a → (s → (a, s)) and prove (by equational reasoning)(15 p)
that the put-put and put-get laws hold if () means “all runs are equal”.

(b) An alternative implementation is S3 s a where Bind and Then have been combined with Get(15 p)
and Put . Below is a partial implementation of an optimiser from S2 to S3 :

data S3 s a where
Ret3 :: a → S3 s a
GetBind :: (s → S3 s a)→ S3 s a
PutThen :: s → S3 s a → S3 s a

opt :: S2 s a → S3 s a
opt (Return a) = Ret3 a
opt Get = get3
opt (Put s) = put3 s
opt (Bind m f) = removeBind m f
opt (Then m n) = removeThen m n

put3 :: s → S3 s ()
put3 s = PutThen s (Ret3 ())
get3 :: S3 s s
get3 = GetBind Ret3
removeBind :: S2 s a → (a → S2 s b)→ S3 s b
removeThen :: S2 s a → S2 s b → S3 s b

Implement removeBind and removeThen and motivate your definitions with the monad laws.

return x >>= f f x -- Law 1
m >>= return m -- Law 2
(m >>= f)>>= g m >>= (λx → f x >>= g) -- Law 3

2

Problem 2: DSL: design embedded domain specific languages (15 p)

A pretty-printing library has the following API (inspired by RWH Chapter 5):

empty :: Doc
char :: Char → Doc
text :: String → Doc
line :: Doc -- newline
(<>) :: Doc → Doc → Doc -- append
union :: Doc → Doc → Doc -- a choice of two variants only differing in layout
prettys :: Doc → [String] -- all layout variants in order of increasing width

The width of a string (which can contain newlines) is the length of its longest line. A usage
example could be prettys d2 with

d1 = union (text "x<-m") (text "x <- m")
d2 = union (text "do {"<> d1 <> char ’;’<> text "f x}")

(text "do " <> d1 <> line <> text " f x")

The four variants would look as follows (widths 7, 9, 13, 15):

do x<-m do x <- m do {x<-m;f x} do {x <- m;f x}

f x f x

(a) Implement a datatype Doc, and the operations of the API. This is intended to be just a (10 p)
“proof-of-concept” or “model”-implementation, there is no need to be efficient.

(b) Is your implementation deep or shallow? Are you using any monads (explain)? Would some (5 p)
of the API operations fit the Monoid type class (explain)?

Problem 3: Types: read, understand and extend Haskell programs which
use advanced type system features (15 p)

Some features of dependently typed languages like Agda can be simulated in Haskell using GADTs
or type families.

data Zero
data Suc n

data Vec a n where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Suc n)

type family Add m n :: ∗
type instance Add Zero n = n
type instance Add (Suc m) n = Suc (Add m n)

(a) Give the signature and implementation of (++) for vector concatenation and explain why it (5 p)
type checks. Would it still type check with the alternative definition of type-level addition below?
Why/why not?

type family Add ′ m n :: ∗
type instance Add ′ m Zero = m
type instance Add ′ m (Suc n) = Suc (Add ′ m n)

(b) Implement a GADT Fin n for unary numbers below n and a lookup function (5 p)

(!) :: Vec a n → Fin n → a

(c) Briefly explain the Curry-Howard correspondence for “false”, “true”, “implies”, “and”, “or”. (5 p)

3

A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

Monoid laws (variables are implicitly quantified, and we write 0 for mempty and (+) for mappend):

0 + m m
m + 0 m
(m1 + m2) + m3 m1 + (m2 + m3)

Example: lists form a monoid:

instance Monoid [a] where
mempty = []
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
-- Get the environment

ask :: m e
-- Change the environment locally

local :: (e → e)→ m a → m a

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
-- Output something

tell :: w → m ()
-- Listen to the outputs of a computation.

listen :: m a → m (a,w)

4

State monads

type StateT s m a
runStateT :: StateT s m a → s → m (a, s)

class Monad m ⇒ MonadState s m | m → s where
-- Get the current state

get :: m s
-- Set the current state

put :: s → m ()

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
-- Throw an error

throwError :: e → m a

-- If the first computation throws an error, it is
-- caught and given to the second argument.

catchError :: m a → (e → m a)→ m a

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (∧), (|), ¬, ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x)
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a] → Gen [a]
vector :: Arbitrary a ⇒ Int → Gen [a]
arbitrary :: Arbitrary a ⇒ Gen a
fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a]

5

