
Advanced Functional Programming TDA341/DIT260

Patrik Jansson

2010-08-24

Contact: Patrik Jansson, ext 5415. Will drop by the exam hall around 15 and around
17 for questions.

Result: Announced no later than 2010-09-10

Exam check: Monday 2010-09-13 and Friday 2010-09-17. Both at 12-13 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: 3: 24p, 4: 36p, 5: 48p, max: 60p
G: 24p, VG: 48p

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

1

Problem 1(40 p)

A domain specific language Calc (inspired by a simple calculator) has the following constructs:

• arithmetics: integer constants, binary +, −, ∗, /, unary invert (1/), negate (0−)

• state-changers: unary M (memory store), M+ (memory accumulate), and nullary MR (mem-
ory recall), MC (memory clear).

The calculator has one memory cell (of type Value = Double) and calculations may fail (end with
an error value like Left "Division by zero", etc.). Your task is to define a monad CalcM , a
datatype Calc and an evaluator eval ::Calc → CalcM Value for a deep embedding of the calculator
language, and some testing infrastructure (see below).

(a) Define the datatype Calc and the evaluator eval :: Calc → CalcM Value. In this sub problem(20 p)
you may use methods from Monad and MonadState without defining them.

(b) Define the monad CalcM either by using the monad transformers from the appendix or by(10 p)
providing your own Monad and MonadState instance declarations. Would it be possible to use
CalcM Value as a shallow embedding?

(c) Define the monad laws (for return and (>>=)) as QuickCheck properties. Give the types of the(5 p)
properties.

(d) If you wanted to actually run checks of the monad laws for your CalcM monad, what more(5 p)
would you need to define and what kind of problems would you run into?

Problem 2(20 p)

The below program uses a GADT to express typed abstract syntax for a small language Expr
(from lecture 7, spring 2010). Your task is to extend the language with a polymorphic if-then-else
construct. (Don’t repeat the given code unless something needs to change.)

(a) Add an If -constructor to the datatype.(3 p)

(b) Add a corresponding case to the eval function.(3 p)

(c) Add a corresponding case to the infer function.(8 p)

(d) Add a corresponding case to the showsPrecExpr function and provide a type signature for(6 p)
showsPrecExpr . The if-then-else construct should have lowest precedence.

{-# LANGUAGE GADTs, ExistentialQuantification #-}
module Typed where
import qualified Expr as E -- Corresponding lang. without GADTs (not shown)

data Expr t where
Lit :: (Eq t ,Show t)⇒ t → Expr t
(:+) :: Expr Int → Expr Int → Expr Int
(:==) :: (Eq t ,Show t)⇒ Expr t → Expr t → Expr Bool
-- TODO: a)

eOK :: Expr Int
eOK = If (Lit False) (Lit 1) (Lit 2 :+ Lit 1736)

eval :: Expr t → t
eval (Lit x) = x
eval (e1 :+ e2) = eval e1 + eval e2
eval (e1 :== e2) = eval e1 ≡ eval e2

-- TODO: b)

2

data Type t where
TInt :: Type Int
TBool :: Type Bool

data TypedExpr = forall t . (Eq t ,Show t)⇒ Expr t ::: Type t

data Equal a b where
Refl :: Equal a a

(=?=) :: Type s → Type t → Maybe (Equal s t)
TInt =?= TInt = Just Refl
TBool =?= TBool = Just Refl

=?= = Nothing

infer :: E .Expr → Maybe TypedExpr
infer e = case e of

E .LitN n → return (Lit n ::: TInt)

E .LitB b → return (Lit b ::: TBool)

r1 E . :+ r2 → do
e1 ::: TInt ← infer r1
e2 ::: TInt ← infer r2
return (e1 :+ e2 ::: TInt)

r1 E . :== r2 → do
e1 ::: t1 ← infer r1
e2 ::: t2 ← infer r2
Refl ← t1 =?= t2
return (e1 :== e2 ::: TBool)

-- TODO: c)

infixl 6 :+
infix 4 :==
infix 0 :::

instance Show (Type t) where
show TInt = "Int"

show TBool = "Bool"

instance Show TypedExpr where
show (e ::: t) = show e ++ " :: " ++ show t

instance Show t ⇒ Show (Expr t) where
showsPrec = showsPrecExpr

-- TODO: d) type signature and ...
showsPrecExpr p e = case e of

Lit n → shows n

e1 :+ e2 → showParen (p > 2) $
showsPrec 2 e1 ◦ showString " + " ◦ showsPrec 3 e2

e1 :== e2 → showParen (p > 1) $
showsPrec 2 e1 ◦ showString " == " ◦ showsPrec 2 e2

-- TODO: d) ... printing of the if-then-else construct

3

A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

A monoid should satisfy the laws (where the variables are implicitly quantified):

mappend mempty m = m
mappend m mempty = m

mappend (mappend m1 m2) m3 = mappend m1 (mappend m2 m3)

Example: for any type a lists of as form a monoid:

instance Monoid [a] where
mempty = []
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
-- Get the environment

ask :: m e
-- Change the environment for a given computation

local :: (e → e)→ m a → m a

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
-- Output something

tell :: w → m ()
-- Listen to the outputs of a computation.

listen :: m a → m (a,w)

4

State monads

type StateT s m a
runStateT :: StateT s m a → s → m (a, s)

class Monad m ⇒ MonadState s m | m → s where
-- Get the current state

get :: m s
-- Set the current state

put :: s → m ()

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
-- Throw an error

throwError :: e → m a

-- If the first computation throws an error, it is
-- caught and given to the second argument.

catchError :: m a → (e → m a)→ m a

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (∧), (|), ¬, ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x)
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a] → Gen [a]
vector :: Arbitrary a ⇒ Int → Gen [a]
arbitrary :: Arbitrary a ⇒ Gen a
fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where

arbitrary :: Gen a
shrink :: a → [a]

5

