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Abstract

We derive a combinator library for non-deterministic parsers with a monadic interface.
The choice operator is implemented as a breadth-first search rather than the more common
depth-first search, and can be seen as a parallel composition between two parsing processes.
The resulting library is simple and efficient for ”almost deterministic” grammars, which
are typical for programming languages and other computing science applications.

1 Introduction

A parser combinator library is a collection of combinators which can be used to
describe parsers. Since the early 90’s (Fokker, 1995; Hutton, 1992), a huge amount
of different parser combinator libraries has suddenly appeared for modern lazy
functional languages, and their number seems to be steadily growing still.

So what contribution can this paper possibly make? To answer this question, we
need to understand the different issues involved in designing and implementing
parser combinator libraries today.

With Wadler’s popularisation of monads for functional programming (Wadler, 1992),
parser combinators were quickly discovered to have a convenient monadic interface
(Hutton & Meijer, 1998). By now, monads are well understood, there is syntactic
support for them, and good library support which aids reuse of common monadic
combinators. Monads are certainly powerful enough to be able to describe any
context-sensitive grammar, meaning that the structure of the grammar can de-
pend on parts of the input. One example of a context-sensitive grammar is XML,
where open tags have to correspond to matching close tags. Another example is a
programming language with fixity declarations for operations.

However, the power that parser monads provide comes at a price. It has proven
quite difficult to implement a parser monad in an efficient way. The efficiency of
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a parser combinator library usually revolves around a good implementation of the
choice operator, which merges two parsing alternatives. To implement the choice
operator other than by a naive search, a careful analysis of the parsers involved
seems to be needed. However, the use of the monadic bind combinator (), which
sequentialises two parsers where the second parser depends on the result of the first,
seems to make this impossible. For one cannot inspect the structure of the second
parser before the first has produced a result.

Two classes of solutions have been proposed to solve this problem.

The first solution abandons the use of monads altogether and introduces a new
class of combinators. Huge efficiency improvements from forbidding the use of the
monadic bind, and instead introducing a weaker form of sequencing, were shown
in (Swierstra & Duponcheel, 1996) for deterministic parsers, and later generalised
for non-deterministic parsers in (Swierstra, 2000). This idea of a weaker form of
sequencing was one of the motivations behind Hughes’ arrows (Hughes, 2000).
However, with the weaker sequencing, it is only possible to describe context-free
grammars in these systems.

The second solution keeps the monads, but requires instead the user to specify more
information about what kind of choice operator should be used when (Hutton &
Meijer, 1998; Leijen, 2000). Usually, these libraries provide a number of different
choice operators. For example, asymmetric choice means that the right hand side
will not be taken if the left hand side succeeds, deterministic choice is only guar-
anteed to work if the choice can be decided by a one symbol look ahead. Most of
these libraries still provide general choice, which has the efficiency problem men-
tioned earlier.

This paper presents a systematic derivation of a parser combinator library that (1)
has a simple monadic interface, (2) does not need special choice annotations, and
(3) is efficient in both time and space.

The derivation techniques we use are inspired by Hughes’ pretty printing combi-
nator derivation (Hughes, 1995). The idea is to implement an abstract type by a
datatype that sums up all the ways one can construct elements in the datatype,
i.e. the operations that the library provides. This first implementation is called the
term representation, and has trivial implementations for its operations.

We consecutively refine this implementation by observing typical usage patterns of
the constructors, giving them names, and then simplifying the datatype by using
the new contructors. The implementations of the operations in terms of the new
constructors can be derived using the laws that holds for the operations. The result
is a very short and simple implementation of a parser monad.

The efficiency of the choice operator comes from the fact that we implemented
a depth-first search (rather than a breadth-first search), which works well with
”almost deterministic” grammars. This informal term is usually used for grammars
where choices can be decided by not looking too far ahead, and where the expected
number of results is small.
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data Form = Form :& Form | Not Form | Var Char

form, atom, paren, neg, var :: P Char Form
form = do a < atom; (conj a 4 return a)
atom = paren 4 neg 4 var

paren = do this'('; a < form; this’)'; return a
neg = dothis'—'; a + atom; return (Not a)
var do v « sat isAlpha; return (Var v)

conj :: Form — P Char Form
conj a = dothis'&’; b + form; return (a :& b)

sat : (s — Bool) —+ Pss
sat r = do ¢ « symbol;if r ¢ then return c else fail

this :: Eqs = s — Pss
this ¢ = sat (¢ =)

Fig. 1. A parser for a simple propositional logic datatype

2 Specification of Non-Deterministic Parsers

Here, we give a specification of a simple monadic interface to a non-deterministic
parsing library. There is an abstract type P s a of parsers that parse linear strings
of elements of type s into structures of type a. The following primitive operations
exist on these parsers:

symbol :: Ps s
fail z: Psa
(#+) = Psa - Psa — Psa

The parser symbol consumes one symbol from the input (if there is one) and pro-
duces it as a result; if there is no symbol it fails. The parser fail does not consume
any input, produces no results, and always fails. The choice operator (+#) takes two
parsers and combines their results. Further, the type P s a has a so-called monadic
interface as well:

return:: a = Psa
() :Psa— (a > Psb) - Psb

The parser return x does not consume any input and produces z as a result. The
parser p % k (pronounced bind) first behaves like the parser p, but for every result
z produced by p, it then behaves like the parser k z.

In this paper we will sometimes use the do-notation, syntactic sugar that makes it
easier to write expressions containing (). The meaning of the do-notation is given
by means of simple rewriting rules:

doxz « e; (resty = e Az.do (rest)
do e; (rest) = e» A_. do(rest)
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doe = e

An example use of the parser combinators provided here is given in Figure 1, where
we implement a parser form for a simple propositional logic datatype Form. We can
see that we quickly find a need for defining auxiliary parser combinators, such as
sat and this. The purpose of this paper is not to discuss those combinators, instead
we refer to (Hutton & Meijer, 1998; Leijen, 2000). Here, we will restrict ourselves
to developing a suitable implementation of the combinators introduced.

We can define what we mean by the informal explanations given above more for-
mally by defining a semantics mapping from the abstract type P s a to a more
concrete type Parsing s a. In its definition, we use the type {¢) to mean the type
of bags (also called multisets or unordered lists) of elements of type ¢. On the ex-
pression level, empty bags are written {), unit bags are written {z), and we will
use bag comprehension notation, which is akin to list comprehensions.

type Parsing s a = [s] = ((a,[s]))
The type Parsing s a represents the meaning of parsers: functions from strings of

symbols of type s to bags of results. A result is a pair of an answer of type a plus
the remaining part of the input.

The mapping [ -] tells us the meaning of each of the parser combinators:

[-] :: Psa — Parsing s a

[ symbol] (c:s)= {(c,s))

[symbol] [] = ()

[ fail] s =0

[p+#+q] s = [pls U ld]s

[return z] s = {(z,s))

[p»>k] s = ((y,s") | (z,8') € [p]s, (y,8") € [kz]s")

In the following we will use this semantics mapping to derive a number of imple-
mentations the type P s a, leading to an efficient implementation of breadth-first
parsing.

3 Traditional Implementation: Bags as Lists

The traditional (and simplest) implementation of parser combinator libraries takes
the type Parsing s a as a direct implementation of P s a. The semantics mapping
[ -] becomes the identity function, and the bags are implemented as simple lists.

symbol (c:s) = [(c,s)]

symbol [] =[]
fail s =]
(pH+q)s =psHqs

return T s = [(z, )]
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(p»k) s = [(y,s") | (z,8') « ps, (y,8") < kazs"]

We can see that this implementation is very appealing since it is so close to the orig-
inal definition of what the parser combinators mean. However, there are a number
of inefficiency problems with the above definition.

List concatenation List concatenation (+) (used in the definition of (+#)) costs
linear time in the size of its left argument. So, if the (+#) combinator is nested left
associatively, we can a quadratic time behavior in the depth of the nesting.

List comprehensions The list comprehension (used in the definition of (3-)) creates
a lot of intermediate datastructures, which introduces a large constant overhead.

Backtracking The operational reading of the lazy lists constructed during parsing
corresponds to backtracking. Backtracking works well for parsing with grammars
that are highly non-deterministic. However, using backtracking for grammars which
are "mostly” deterministic (i.e. non-deterministic choices can be resolved by looking
but a few steps ahead in the input) leads to a nasty space-leak: at each choice point,
we have to hold on to the complete input left at that point, because we might come
back to that point in backtracking.

In the next couple of sections, we will derive an alternative implementation that
overcomes each of these problems. But first, we will look at a number of laws that
hold for the parsing combinators we use.

4 Laws for Non-Deterministic Parsers

Here, we present a list of laws that should hold for any implementation of the
specified library that respects the given semantics. Firstly, without surprise, the
well-known monad laws do in fact hold:

kzx

p
p» Az . k' k)

L1. returnx » k
L2. p > return
L3. (p»FK) » k

To prove a law stating that p = ¢, we simply show that [p]s =[¢] s for all s.
Here is the proof of law L1:

[return z » k] s

{(y,s") | (z,8") € [return z]s, (y,s") € [k z]s")
((y,s") | (y,6") € [k z]s)

[k z]s

The other laws have similar proofs.

The above monad laws provide two laws (L1 and L3) which can be used to simplify
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parsers occurring on the left hand side of (). Here are two more such laws; one
for fail and one for (++). These are actually two of the laws for monads with a plus.

fail
(p k)t (¢ » k)

Other laws for monads with a plus are the following, which say that choice ignores
failing parsers.

L6. fail 4+ ¢
L7. p 44 fail

q
p

Moreover, the choice operator (++) does not prefer any argument order, or order of
nesting, and is therefore commutative and associative. Note that the commutativity
property does not hold in general for monads with a plus, but it holds for (+4)
since bags are unordered.

I8 (ptq) H r = p+t+(g+t+71)
L9. p +H g = qgHtp

These laws follow directly from the commutativity and associativity of the union
operator U for bags.

Lastly, there is one law about the symbol operator which is at the heart of the
algorithm we will use later. It says that a choice between two parsers that both
start by consuming a symbol, also starts with consuming a symbol, and proceeds
with a choice between the two remaining parts of the parsers.

L10. (symbol » k) ++ (symbol k') = symbol » (Ac.kcHt k' ¢)

The case for non-empty strings of this law can be proved as follows:

[ (symbol » k) ++ (symbol » k')] (c:s)
= [symbol » k] (c:s) U [symbol k'] (c:s)
= [k c]sU[k c]s
= [k cH Kk c]s
= [symbol » (Ac.k ¢ ++ k' ¢)] (c:s)

5 Implementation A: Term Representation

To find an efficient implementation of the parsing library specification, we will use
an approach pioneered by John Hughes in his lecture notes on Pretty Printing
(Hughes, 1995). The idea is to derive an implementation of an abstract type by
first representing it as a datatype that sums up all the ways one can construct
elements in the datatype, i.e. the operations that the library provides. This first
implementation is called the term representation, and has trivial implementations
for its operations.
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We consecutively refine this implementation by observing typical usage patterns of
the constructors, giving them names, and then simplifying the datatype by using
the new contructors instead of the old ones. The implementations of the operations
in terms of the new constructors can be derived using the laws that hold for the
operations.

We start with the following term representation for P s a:

data P s a = Symbol — wrong!
| Fail
| Psa:++ Psa
| Vb.Psb:» (b = Psa)
| Return a

Some explanation is in place here: The constructor functions Fail, (:-+H), and Return
directly correspond to the operators fail, (+#), and return. The constructor (:-)
also directly corresponds to the operator (), but since () is polymorphic not
only in its final result type, but also in its intermediate result type, we need to use
local type quantification in the declaration of (:3-).

However, the type of the Symbol constructor implies that something is wrong. We
can see that Symbol :: P s a, but symbol :: P s s. This difference is quite impor-
tant! The type of Symbol really does not make much sense as a representation of the
function symbol, since the result of symbol should be a symbol, not just something
of any type.

To fix this, we introduce a different operation to our parsing interface, but we
do this just for the sake of this particular implementation. This new operation,
called symbolMap, can be used to implement symbol, and it actually a is variant
of symbol which takes an extra argument — a function that is to be applied to the
parsed symbol before returning it.

symbolMap :: (s = a) = Psa

(Note that the type of symbolMap fits nicely as a constructor of the type P s a.)
Its semantics mapping is:

[ symbolMap h] (c: s)
[ symbolMap h] []

((he,s))
O

Of course, symbol can trivially be defined in terms of symbolMap using the following
law:

D1. symbol = symbolMap id

So, the final version of our term representation of the type P s a becomes:
data P s a = SymbolMap (s — a)
| Fail
| Psa:+H+Psa
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| Vb.Psb:» (b - Psa)
| Return a

The definitions of the operators in our parsing interface in terms of the above
constructors are straightforward:

symbol = SymbolMap id

fail = Fuail
() = ()
(=) = ()

return = Return

Lastly, we can use the definition of the semantics mapping [-] in order to give a
function parse that takes a parser and a string of input symbols, and produces the
results of the parser. However, we leave the implementation of the bag type {.)
still abstract for now.

parse i Psa — Parsingsa
parse (SymbolMap h) (¢ : s) = {(h¢c,s))
parse (SymbolMap h) [] )
parse Fail . )
parse (p :+H+ q) parse p s U parse q s
parse (Return x) {(z,5))
parse (p k) {(y,s")| (z,8") € parsep s,
(y,s") € parse (k z) s")

»w » ®»
i1

It is not easy to come up with a good way of implementing the bags used in the
above function, because of the use of bag union (U) and the bag comprehensions.
Instead, we will consecutively refine the implementation of the datatype P s a in
order to remove the constructor functions that give rise to the use of the bag
operators ((:+H) and (:3), respectively).

6 Implementation B: Removing Bind

Our goal in the next implementation is to remove the possibly expensive bag com-
prehension in the last clause of the definition of parse. The way we remove that
clause here is by removing the constructor function (:%) from our implementation
alltogether. This we do by trying to simplify away uses of (3) as much as possible,
and then give names to the cases that cannot be removed. These names we will use
to introduce new constructor functions instead of the ones we could simplify away.

There exist laws for simplifying almost all parsing operators on the left hand side
of a (») operator, except symbol. We therefore merge the constructor (:») with
the constructor SymbolMap into a new constructor, called SymbolBind, and then
implement the two operators () and symbol in terms of the new constructor. The
law for the new constructor is:
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D2. SymbolBind k = symbol » k

Note that we are abusing notation a little bit here; really we should have used a
function symbolBind in the above law, but since we actually never implement such
a function explicitly, we will use the constructor function in its place. The new
datatype becomes:

data P s a = SymbolBind (s — P s a)
| Fail
| Psa:+H+Psa
| Return a

So how do we implement our parsing operators? The three untouched operators are
defined as before:

fail Fail
(Ht) (:-+)
return = Return

The implementation of the operator symbol follows directly from law L2 and defi-
nition D2:

symbol = SymbolBind Return

We can also derive the implementation of the (%) operator, resulting in:

SymbolBind f » k = SymbolBind (Ac . f ¢ > k)
Fail >k = Fail

(p :+H Q) >k = (p» k)t (¢ > k)
Return z >k =Fkz

To illustrate this derivation, the first clause in the definition of (%) goes as follows:

SymbolBind f » k

(symbol » f) » k — by D2
= symbol » (Ac.f c» k) — by L3
SymbolBind (Ac.f ¢ k) — by D2

The other clauses can be derived in a similar fashion. Lastly, the function parse has
one fewer case to deal with:

parse (SymbolBind f) (¢ : s) = parse (f ¢) s
parse (SymbolBind f) [] ={)

parse Fail - )

parse (p :+H+ q) s = parsep s U parse q s
parse (Return x) s = {(z,s))
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The first two clauses of this definition follow directly from definition D2, and the
semantics mapping for ().

This implementation does not need to implement bag comprehensions, but the bag
union operator (U) is still there. In the next refinement, we would like to remove
the constructor function (:++) which gives rise to the use of (U).

7 Implementation C: Removing Plus

Similar to the previous definition, we make the observation that there exist laws for
simplifying any parser on the left and right hand side of a (44) operator, except
for return. So, we merge (:+4) with Return into a new constructor ReturnPlus and
implement the two operators (+4) and return in terms of the new constructor.

The law for the new constructor is:

D3. ReturnPlusxp = returnz 4 p

The new datatype loses yet another two constructors and gains a new one:

data P s a = SymbolBind (s — P s a)
| Fail
| ReturnPlus a (P s a)
There is only one untouched operator defined as before:
fail = Fail
The implementation of the return operator can easily be derived from law L7 and

definition D3:

return x = ReturnPlus x Fail

The symbol operator is implemented as before, only it uses the new definition of
return:

symbol = SymbolBind return

The choice operator (++) has to be defined by means of pattern matching on the
other constructors. The complete definition of the (+#) operator becomes:

SymbolBind (Ac . f ¢+ g ¢)

SymbolBind f +H SymbolBind ¢

Fail +Hq =gq
p ++ Fail =7p
ReturnPlus x p +4 q = ReturnPlus xz (p tH q)
P H+ ReturnPlus © ¢ = ReturnPlus z (p 1 q)

The first clause is a very powerful case, which, by using law L10, allows us to
combine two parsers of the form SymbolBind f! The second and third clauses are



Functional pearls 11

direct consequences of laws L6, and L7, respectively. The last two clauses can be
derived using law L8, which is associativity of (44), and definition D3. The last
clause even makes use of law L9, which is commutativity of (+4)!

The new definition of (+4) thus changes the order of results compared to a tra-
ditional implementation using lists and backtracking. The order of arguments is
changed in such a way that all intermediate results are returned before the next
symbol is consumed. Together with the first clause, which merges two uses of symbol
into one, this leads to a breadth-first (rather than the traditional depth-first) imple-
mentation of parsing.

The implementation of the (%) operator has to deal with the new constructor
ReturnPlus. Here is a derivation of the corresponding clause:

ReturnPlus © p » k

= (return z 44 p) > k — by D3
= (returnz > k) H+ (p > k) — by L5
= kzHH(p»k) — by L1

The complete definition of (3-) looks as follows:

SymbolBind f » k = SymbolBind (Ac.f c» k)
Fail >k = Fail
ReturnPluszp»k = kz ++ (p > k)

And lastly, the function parse has again one case fewer to deal with:

parse (SymbolBind f) (c:s) = parse (f ¢) s
parse (SymbolBind f) [] = ()
parse Fail - )
parse (ReturnPlus z p) s {(z,8)) U parseps

The last clause follows directly from definition D3 and the semantics mapping for
return and (+t).

The parse function is now rather efficient, since we have removed bag comprehen-
sions and reduced the use of bag union to a simple case. However, there is still one
source of inefficiency left, which we will discuss in Section 9.

8 Implementing Bags as Lists, Again

As we remarked, the parse function from the previous section does not contain
any complicated operations on bags anymore. Therefore, we can now decide how
to implement the used bags. The decision is not difficult; we will use plain lists.

Here is the implementation of the parse function above using lists:

parse (SymbolBind f) (c:s) = parse (f ¢) s
parse (SymbolBind f) [] =]
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parse Fail _ =]
parse (ReturnPlus © p) s = (z,s) : parseps

As we can see, to construct the lists, we are only using (:) and [], and it takes but
constant time to produce a result.

If we were going to use lists for bags anyway, why did we bother with doing the
development with bags? The answer is that using bags in our original specification
of parser semantics allowed us to change the order of the results in the list. This is
what allowed us to construct a breadth-first implementation.

So far, we have only reasoned about partial correctness: If our functions produce a
result at all, it is going to be the correct result. To be fully correct, we also need
to argue why our functions will produce actual results. It is easy to see that (+4)
and (») behave well, since they are applied to smaller arguments in their recursive
calls. However, for any interesting grammar, the parsers we create are going to be
infinite anyway, since we are allowed use recursion in the definition of the parsers.

Therefore, the parse function might not terminate at all! For it is perfectly possible
for some infinite input to lead the parser into a loop where it will never come out
of, simply because there are no results and it will take an infinite amount of time
to find that out.

Therefore, we will (informally) argue that parse is productive. It is productive in the
sense that for each consumption of a constructor in the parser datatype, a result is
?produced”: either one symbol from the input is consumed, or a result is generated
on the output list, or the output list is terminated.

However, the implementation we have arrived at now is not the final one yet; there
is still one source of inefficiency left which we want to remove.

9 Implementation D: Associativity of Bind

Let us take a look at the implementation of () in Section 7. It is defined using
recursion over its left argument. Just as for example with list concatenation, using
() left-associatively in a nested fashion leads to behaviour taking quadratic time
in terms of the nesting depth. This typically happens in recursive grammars for
tree-like structures. Therefore, we would like to force (3-) to be used only right-
associatively.

To solve this, we can not use the technique of refining the type P s a anymore.
Instead, we have to make the way a parser is used, its context, apparent to the
implementation of the parser type. Passing the context can (in our case) make it
explicit in what way the bind operator is used left-associatively, so that its im-
plementation can do something about that. Thus, the next implementation of the
parser type becomes a function from some type representing its context to a real
parser. This technique is called the context passing implementation in Hughes’ notes
(Hughes, 1995).



Functional pearls 13

Before we look at exactly how to implement the type P s a with this new context,
we introduce some preliminaries. We will reuse the implementation of the type
P s a from the previous section (Section 7) as a basis for our new implementation.
To avoid name confusion, we will use primed (') versions of the names to refer to
the implementations in that section:

type P'sa

symbol’ : Plss

faal’ 2 Psa

(++") 2 P'sa— P'sa— Psa
return’ 2a — Psa

(»" i P'sa— (a— P'sb) - P'sb
parse’ :: P'sa — Parsing s a

We will use the unprimed versions of the names for the implementation of the
current section. The idea is that in the new implementation, the function (»') is
only going to be applied right-associatively.

Next, we have to decide what the context we are going to pass around will look
like. For simplicity, let us assume that the parser is always used in a problematic
context, i.e. where it is the left argument of an application of (3%'). So, contexts
have the following shape: ”e »' k” (where e represents a hole in which parsers can
be plugged in), and can simply be represented by k itself. In the case where a
parser is used in a context that does not actually have this shape, we simply take
k = return’, in which case we have the identity context, by law L2.

The type of k depends on the result type of the parser that is put in the hole in
the context, and also on the result type of the whole context. These types are not
necessarily the same; when we construct a parser, we have no idea what the final
result type of its context will be. Therefore, we introduce two different result types,
o and b, and, inside P, universally quantify over the result type of the context b.

type Context sab= a — P'sb
type Psa = Vb.Context sab — P'sb

What is the law that will allow us to derive the implementations of the correspond-
ing operations? For a parser p in the new type and its corresponding parser p' in
the old type, the following correspondence should hold:

D4. p = Ie.p' 'k
Furthermore, we want the actual results of the two parsers to be the same:
D5. parsep = parse' p'

We can now derive the definitions for the parsing operations. Here are the three
primitive parsing operations:

symbol = Ak . SymbolBind k
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fail = Mk . Fail
pHqg=Ak.pk+t' gk

Here is the derivation of the function symbol:

symbol
= Ak .symbol' %'k — by D4
= Ak . SymbolBind return’ »' k — def. symbol’
= Mk . SymbolBind (\c . return’ ¢ %" k) — def. (%)
= Ak . SymbolBind k — by L1

The derivation of fail goes in a similar way. Here is the derivation of (+4):

pHtq
= M. (p' ' ¢) "k — by D4
= k. (p' ' k) +' (¢ >'k) — by L5
= MNe.pk+'qk — by D4

The definitions of the monadic operators look like this:
returnx = Ak .k x

p»f =X.p(Qz.fak)

It is interesting to note that these definitions do not depend on return’ and (')
at all! Let us look at their derivations. Here is return:

return T
= Mk.return'z»'k — by D4
= Xk . kz — by L1

And here is (»):

p»>f
= Xe.(p'»' )"k — by D4
= Xk .p'»>"(Mz.f'lz»"k) — by L3
= Xe.p(Qz.fzk) — by D4

Note how we use the associativity law of () (L3) in order to ensure right-associativity
— this was our original goal! Lastly, we implement the parse function:

parse p = parse' (p return’)

Its derivation is equally simple:

parse p
= parse' p' — by D5
= parse’ (p' »' return’) — by L2
= parse' (p return’) — by D4
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— types
typePsa =Vb.(a — P'sb) = P'sb
data P’ s a = SymbolBind (s — P' s a)
| Fail
| ReturnPlus a (P's a)

— main functions
symbol = Ak . SymbolBind k

fail = Xk . Fail
pHrq = Xk.pkH qk
returnt = Ak .k x
p»f =Xk.p(Az.fzk)

parse p = parse’ (p (A\z . ReturnPlus T Fail))

— auxiliary functions
SymbolBind f ' SymbolBind ¢ = SymbolBind (Ac.f ¢+’ g c)

Fail ' ¢ =4q
P +H+' Fail =p
ReturnPlus © p H' ¢ = ReturnPlus T (p tH' q)
P ' ReturnPlus © ¢ = ReturnPlus z (p H+' q)

parse’ (SymbolBind f) (c:s) = parse’ (f c) s
parse’ (ReturnPlus z p) s (z,8) : parse’ ps
parse’ _ - =]

Fig. 2. Final and complete parser implementation

We have now arrived at the final implementation. Note that the final implementa-
tion does not make use of (%) anymore. Figure 2 shows the complete implementa-
tion in a compact way.

10 Look Ahead

The five parser combinators we have dealt with so far are enough to describe parsers
for any computable grammar. However, there are some parsers which are quite
cumbersome to define using only these combinators.

As an example, let us imagine specifying a parser for identifiers in a simple language.

Let us day that an identifier is a sequence of alpha-numeric characters, where the

sequence can be of any strictly positive length. This definition immediately leads

to problems! For example, when parsing the string "name”, we get the results
” N0 N NN

{(aana:77)ameaa)7 (”na”,”me”), (”nam , € ), (”name y )} HOWGVGI‘, our intention
was probably to only get {(”name”,””)).

A parsing technique that could have solved this problem is to perform look ahead —
we can look at the input without consuming it in order to decide what to do next.
In the case of the identifier parser, we can use look ahead to decide that we will fail
if there are still characters left which are alpha-numeric. Thus, we introduce a new
parsing operator in our library:
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look :: P s|[s]

The intention of this operator is to return the part of the input that has not been
consumed by the parser yet, without consuming any of it itself:

[look] s = {(s,s))

It is not possible to implement look transparently in terms of the other combinators.
This means that we have to adapt our current implementation. Simply following
the development we have gone through for the other parser operators, this turns out
to be quite straightforward. Not surprisingly, we end up with an extra constructor
in the P’ datatype:

data P' sa = ... | LookBind ([s] = P'sa)

The implementation of the function look comes out as follows:

look = Ak . LookBind k

We also have to adapt the auxiliary functions to be able to deal with the new
constructor LookBind. First, we add the following clauses to (+'):

LookBind f +H' LookBind g = LookBind (\s . f s +H' g s)
LookBind f ' ¢ = LookBind (As . f s #+' q)
P ++' LookBind g = LookBind (As.p ' g s)

These all directly follow from laws that can be derived from the semantics defini-
tion of look. The first clause is an optimisation: it is not necessary but improves
performance, because it avoids creating expressions of the form LookBind () s .
LookBind (X sz . ...)), which are unnecessary, since s; and s; will be bound to the
same value anyway.

Lastly, we add the following clause to parse’:

parse’ (LookBind f) s = parse' (f s) s

The complete input s is copied, which can lead to space leaks if f holds on to s
while parsing continues to consume s. So, we have to be careful when using look.
Here is an example of how look can be used in a correct way. The function munch
takes a predicate over symbols r, and parses as many symbols as possible from the
input that satisfy r.

munch :: (s = Bool) — P s[s]
munchr = dos « look; sim s

where
sim (c:s) | r ¢ = do get; s' + sim; return (¢ : s')
sim _ = return ||

The implementation works as follows. We grab the current input with look and
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pass it to the local function sim, which inspects the input, and builds a parser
that precisely consumes the symbols that satisfy r. Note that when we decide to
consume a symbol, we already know which symbol it is (namely ¢), so we can
ignore the result of get. The identifier parser we introduced earlier can now simply
be expressed as munch isAlphaNum.

Other powerful parser operations which can be implemented using look are

eof ;2 P s Bool — checks for end of input
longest :: Psa — Psa — only delivers longest results
try 2 Psa — Ps(Maybe a) — delivers Nothing when failing

We leave their implementations as an exercise to the reader.

11 Other Parse Functions

One other design freedom which we have not explored yet is varying the kind of
result that the parse function delivers. So far, we have made the assumption that the
user of our parsers is interested in all intermediate results plus the left over part of
the input. This is not always the case however, and the user might pay a performance
price for that. In this section, we show three alternative parse functions. These can
be added to the library without making a change to the existing definitions.

Some of these functions can actually be implemented in terms of the current parse’
function, but the point here is that the performance price for that might be too
high, and that there is a simple alternative which does not require that price.

Complete results Suppose we are only interested in the results that managed to
parse the complete input. In that case, we can adapt the parse’ function as follows:

parse’ :: P' s a — [s] = [a]
' (SymbolBind f) (c:s) = parse’ (f ¢) s
] z : parse’ p|]
parse' p s
parse' (f s) s

=[]

parse’ ( (
parse' (ReturnPlus z p) |
( s
( s

parse’ (ReturnPlus _ p)
LookBind f)

parse’

parse’

The difference with the old parse’ is in the clauses dealing with ReturnPlus, since
we only deliver a result when the input is [].

Longest result Sometimes, the input cannot be parsed completely at all. In that
case, we might be interested in the result that managed to parse the input furthest:

parse' :: P' s a — [s] = Maybe (a,][s])
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parse' p s = longest p s Nothing

where
longest (SymbolBind f) (c: s) mres = longest (f ¢) s mres
longest (ReturnPlus z p) s . = longest p s (Just (z, s))
longest (LookBind f) s mres = longest (f s) s mres
longest _ _ mres = mres

In a similar way, we can produce a list of all longest results.

Keeping the position A parsing function which cannot be defined using the simple
function parse’, is a parse function which, when a parse error occurs, also produces
the position in the input where the error occurred. Let us assume we have a type
for positions Pos, an initial position posg, and a function next, which computes the
next position given a current position and a symbol:

type Pos
posy :: Pos
next :: Pos — Symbol — Pos

Let us assume for simplicity that we are only interested in one result which has
parsed the file completely, or, alternatively, a position of where the longest parse
failed if there are no complete results.

parse' :: P' s a — [s] — FEither Pos a
parse’ p s = track p s posg

where
track (SymbolBind f) (c:s) pos = track (f ¢) s $! next pos c
track (ReturnPlus z _) [] pos = Right x
track (ReturnPlus _p) s pos = track p s pos
track (LookBind f) s pos = track (f s) s pos
track _ _ pos = Left pos

We use strict function application ($!) to force evaluation of the position during
parsing, because otherwise lazy evaluation will build a large position expression in
the heap which consumes a lot of memory.

The above parse function is the first step towards adding a good error reporting
mechanism.

12 Discussion

We have derived a simple and efficient implementation of a parser monad. It is not
possible to show a detailed benchmark comparison here, but we refer to (Ljunglof,
2002), which gives an excellent overview of different parser combinator implemen-
tations.

The resulting implementation turns out to be quite easily extendible, as we showed



Functional pearls 19

in Section 10 when we added the look operator. We have also extended the parser
monad in the same way when adding a function that can convert a function in
Haskell’s type ReadS a into a parser of type P Chara. This was done as part of
an extension that the Glasgow Haskell Compiler implements that invisibly replaces
uses of Haskell’s read function by calls to a parser in our parser monad and vice
versa.

One interesting thing we noted was that the datatype P’ s a is completely iso-
morphic to the type SP a b of stream processors used in the Fudgets framework
(Carlsson & Hallgren, 1998). In fact, the (+#+') operator is one of the parallel com-
position operators provided for stream processors! This inspired the view of the
parser combinators being parsing process combinators. The choice operator can
then be seen as a parallel composition of parsing processes.

It is well-known that we can force a monadic computation to be built right-associatively
with respect to (3) by using a continuation monad transformer (Liang et al., 1995).

In fact, a continuation monad transformer was used originally, but for the sake of
presentation we decided to explain this using the context passing implementation
instead.
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