Software Engineering using Formal Methods
First-Order Logic

Wolfgang Ahrendt

25th September 2015

SEFM: First-Order Logic CHALMERS 150925 1/52

Install the KeY-Tool...

Follow instructions on course page, under:
=Links, Papers, and Software / Tools

We recommend using Java Web Start:

» Start KeY with two clicks
(you need to trust our self-signed certificate)
» Java Web Start installed with standard JDK/JRE

» Usually browsers know filetype.
Otherwise open KeY. jnlp with javaws.

Alternaively, install KeY locally, download from www.key-project.org.

SEFM: First-Order Logic CHALMERS 150925 2 /52

www.key-project.org

Motivation for Introducing First-Order Logic

1) we specify JAVA programs with Java Modeling Language (JML)

JML combines
» JAVA expressions
» First-Order Logic (FOL)

2) we verify JAVA programs using Dynamic Logic

Dynamic Logic combines
» First-Order Logic (FOL)
» JAVA programs

SEFM: First-Order Logic CHALMERS 150925 3 /52

FOL: Language and Calculus

we introduce:

» FOL as a language

» calculus for proving FOL formulas

» KeY system as propositional, and first-order, prover (for now)
» (formal semantics: if time)

SEFM: First-Order Logic CHALMERS 150925 4 /52

Part |

The Language of FOL

SEFM: First-Order Logic CHALMERS 150925 5 /52

First-Order Logic: Signature

Signature
A first-order signature X consists of

» aset Ty of types

v

a set Fy of function symbols

v

a set Py of predicate symbols

> a typing ay

intuitively, the typing ay determines
» for each function and predicate symbol:
> its arity, i.e., number of arguments
> its argument types

» for each function symbol its result type.
formally:

» ay(p) € Tx* for all p € Py (arity of pis |ax(p)|)
» ax(f) e Ts* x Tx forall f € Fx (arity of f is |ag(f)] — 1)

SEFM: First-Order Logic CHALMERS 150925 6 /52

Example Signature X; 4+ Constants

Tzl = {int},
F):l = {+, -} U {, -2,-1,0,1,2, },
P21::{<}

ay, (<) = (int,int)
ayx,(+) = ay,(-) = (int,int,int)
ay,(0) = ax, (1) = ax,(-1) = ... = (int)

Constant Symbols

A function symbol £ with |ax,(f)| =1 (i.e., with arity 0)
is called constant symbol.

here, the constant symbols are: ...,-2,-1,0,1,2, ...

SEFM: First-Order Logic CHALMERS

150925

7752

Syntax of First-Order Logic: Signature Cont’d

Type declaration of signature symbols
» Write 7 x; to declare variable x of type 7
» Write p(7i1,...,7); for a(p) = (71,...,7r)
» Write 7 f(11,...,7/); for a(f) = (71,...,7r, T)

r =0 is allowed, then write f instead of (), etc.

Example
Variables integerArray a; int i;
Predicate Symbols isEmpty(List); alertOn;

Function Symbols int arrayLookup(int); Object o;

SEFM: First-Order Logic CHALMERS 150925 8 /52

Example Signature X; 4+ Notation

typing of Signature:

ay, (<) = (int,int)
ayx,(+) = ay,(-) = (int,int,int)
0421(0) Ozzl(l) = Oczl(—l) =..= (int)

can alternatively be written as:

<(int,int);
int +(int,int);
int 0; int 1; int -1;

SEFM: First-Order Logic CHALMERS

150925

9/52

First-Order Terms

We assume a set V of variables (V N (Fs U Ps) = 0).
Each v € V has a unique type ax(v) € Tx.

Terms are defined recursively:

Terms

A first-order term of type 7 € Ty
> is either a variable of type 7, or
> has the form f(t1,...,t,),

where f € Fy has result type 7, and each t; is term of the correct
type, following the typing ay of f.

If f is a constant symbol, the term is written f, instead of f().

SEFM: First-Order Logic CHALMERS 150925 10 / 52

Terms over Signature X,

example terms over ¥ 1:
(assume variables int vq; int vs;)

> -7
> +(-2, 99)
» —(7, 8)
» +(-(7, 8), 1)
> +(=(v1, 8),)
some variants of FOL allow infix notation of functions:
» -2 + 99
»7 -8
» (7 -8) +1
» (v - 8) + w»

SEFM: First-Order Logic CHALMERS 150925 11 /52

Atomic Formulas

Atomic Formulas

Given a signature .
An atomic formula has either of the forms

> true
> false
>ty =ty (‘“equality”),
where t; and t, are first-order terms of the same type.

» p(ty,...,tn) (“predicate”),
where p € Py, and each t; is term of the correct type,

following the typing ay of p.

SEFM: First-Order Logic CHALMERS 150925

12/52

Atomic Formulas over Signature X,

example formulas over X q:
(assume variable int v;)

v

7=28
7 < 8
» -2 - v < 99
v< (v +1)

v

v

SEFM: First-Order Logic CHALMERS 150925 13 /52

First-order Formulas

Formulas
» each atomic formula is a formula

» with ¢ and ¢ formulas, x a variable, and 7 a type,
the following are also formulas:

> =6 (‘not¢”)

» 9Ny ("pand ")

> oVY (“Pory”)

> o= (P implies ")

> ¢ (" is equivalent to ¢")

» V7 x; ¢ (“forall x of type T holds ¢")

» I 7 x; ¢ (‘“there exists an x of type T such that ¢")

In V7 x; ¢ and 37 x; ¢ the variable x is ‘bound’ (i.e., ‘not free’).

Formulas with no free variable are ‘closed’.

SEFM: First-Order Logic CHALMERS 150925 14 /52

First-order Formulas: Examples
(signatures/types left out here)

Example (There are at least two elements)

3x,y;~(x =y)

Example (Strict partial order)

Irreflexivity Vx; —(x < x)
Asymmetry Vx;Vy;(x < y — =(y < x))
Transitivity Vx; Vy; Vz;

(x <yANy <z—x<2z)

(is any of the three formulas redundant?)

SEFM: First-Order Logic CHALMERS 150925 15 /52

Semantics (briefly here, more thorough later)

Domain

A domain D is a set of elements which are (potentially) the meaning of
terms and variables.

Interpretation

An interpretation Z (over D) assigns meaning to the symbols in Fx U Py
(assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given D and Z, a closed formula evaluates to either T or F.

Validity

A closed formula is valid if it evaluates to T in all D and Z.

In the context of specification /verification of programs:
each (D,Z) is called a 'state’.

SEFM: First-Order Logic CHALMERS 150925 16 / 52

Useful Valid Formulas

Let ¢ and ¢ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:
> (6 AY) > ~pV
> (V) > ~p A
> (true A ¢) <> ¢
> (falseV ¢) <> ¢
> trueV ¢
» —(false A @)
> (9=) & (mo V)
> ¢ — true
> false — ¢
> (true — @) <> ¢
> (¢ — false) <> —¢

SEFM: First-Order Logic CHALMERS 150925 17 / 52

Useful Valid Formulas

Assume that x is the only variable which may appear freely in ¢ or .

The following formulas are valid:
» (37X ¢) e VT X ¢
» (V7 x; ¢) I T X 0
» (V7 x; oANY) > (YT x5)N T X)
» (7 x oVY)e 3T x)V(ET X Y)

Are the following formulas also valid?
» (V7 x; oVY) > (V7 x @)V (VT X)
» (7 x dANY) = (3T Tx)N T T X W)

SEFM: First-Order Logic CHALMERS 150925 18 / 52

Remark on Concrete Syntax

Text book SPIN KeY
Negation = ! !
Conjunction A && &
Disjunction v Il |
Implication —, D - —>
Equivalence - <> <>
Universal Quantifier Vx; ¢ n/a \forallT x; ¢
Existential Quantifier dx; ¢ n/a \existsT x; ¢

Value equality

SEFM: First-Order Logic

CHALMERS

150925 19 /52

Part 1l

Sequent Calculus for FOL

SEFM: First-Order Logic CHALMERS 150925 20 /52

Motivation for a Sequent Calculus

How to show a formula valid in propositional logic?
— use a semantic truth table.

How about FOL? Formula: isEven(x)V is0dd(x)

x | isEven(x) | is0dd(x) | isEven(x) V is0dd(x)
1 F T T
2 T F T

And what about the interpretation of is0dd and isEqual?

Checking validity via semantics does not work. |

Instead...

SEFM: First-Order Logic CHALMERS 150925 21 /52

Reasoning by Syntactic Transformation

Prove Validity of ¢ by syntactic transformation of ¢ J

Logic Calculus: Sequent Calculus based on notion of sequent:

¢17"'7wm = (bl’"'?(bn
~——— ———
Antecedent Succedent

has same meaning as

(V1A AYm) = (1 V-V ¢n)

which has (for closed formulas v, ¢;) same meaning as

{1, dmy E G1 V-V gy

SEFM: First-Order Logic CHALMERS 150925 22 /52

Notation for Sequents

¢17-~7¢m = ¢17---,¢n J

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

¢, 1, ... match formulas, I', A, ... match sets of formulas
Characterize infinitely many sequents with single schematic sequent, e.g.,

F = o¢oAY, A

Matches any sequent with occurrence of conjunction in succedent

Call ¢ A ¥ main formula and I, A side formulas of sequent

Any sequent of the form I, ¢ = ¢, A is logically valid: axiom

SEFM: First-Order Logic CHALMERS 150925 23 /52

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects
semantics of connectives as closely as possible

Premisses
=4 --- I =A,

= A
g

Conclusion
Meaning: For proving the Conclusion, it suffices to prove all Premisses.

RuleName

Example
= o¢,A M=y, A
= ¢ N9, A

andRight

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the

validity of its conclusion.
SEFM: First-Order Logic CHALMERS 150925 24 /52

‘Propositional’ Sequent Calculus Rules

close ————— true ————— false ——————
e = o¢,A = true, A I false = A
main | left side (antecedent) right side (succedent)
¢ = ¢,A Moo= A
o _ v
" r,_|¢:>A r:>_\¢,A
d Mo, v= A = ¢, A =y, A
an
Lo ANyp=A Fr= ¢ A, A
Moo= A My =A = ¢, v, A
or
MoVvy=A F=o¢ VA
. = ¢, A Ny = A o=y A
im
P [o— b= A F= ¢ 0.A

SEFM: First-Order Logic

CHALMERS 150925 25 /52

Sequent Calculus Proofs

Goal to prove: G = Y1,...,0m = ¢1,...,0,

>

>

find rule R whose conclusion matches G

instantiate R such that its conclusion is identical to G

apply that instantiation to all premisses of R, resulting in new goals
g1, -, Gr

recursively find proofs for G1, ..., G,

tree structure with goal as root

close proof branch when rule without premiss encountered

Proof

Froof Tree
equiv_right

© [Case 1
@ B8 Case 2
imp_right
replace_known _left
. concrete_not_1
Goal-directed proof search concrese impl_3
close_goal _antec
In KeY tool proof displayed as JAVA Swing tree &

SEFM: First-Order Logic CHALMERS 150925 26 /52

A Simple Proof

CLOSE * * CLOSE
p=p, q b, 9= q

p,(p—4q)=gq
pA(pP—q)=q
= (P AN (P—4q)—q

A proof is closed iff all its branches are closed

Demo
prop.key

SEFM: First-Order Logic CHALMERS 150925 27 /52

Proving Validity of First-Order Formulas

Proving a universally quantified formula

Claim: V7 x; ¢ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 Vint x; (even(x) — divByTwo(x))

Let ¢ be an arbitrary number Declare “unused” constant int c

The even number c is divisible by 2 prove even(c) — divByTwo(c)

Sequent rule V-right
= [x/c] ¢, A
F=V7x; ¢,A

forallRight

> [x/c] ¢ is result of replacing each occurrence of x in ¢ with ¢

» ¢ new constant of type 7

SEFM: First-Order Logic CHALMERS 150925 28 /52

Proving Validity of First-Order Formulas Cont’d

Proving an existentially quantified formula

Claim: d7x; ¢ is true

How is such a claim proved in mathematics?

There is at least one prime number Jint x; prime(x)

Provide any “witness”, say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule F-right
M= [x/t]¢, I7x; ¢, A
= d7x; ¢,A

existsRight

> t any variable-free term of type 7

» Proof might not work with t! Need to keep premise to try again

SEFM: First-Order Logic CHALMERS 150925 29 /52

Proving Validity of First-Order Formulas Cont’d

Using a universally quantified formula

We assume V7 x; ¢ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd Vint x; (prime(x) — odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd prime(17) — odd(17)

Sequent rule V-left
rvrx; o, [x/te = A
Vrx, ¢ = A

forallLeft

» t' any variable-free term of type 7

» We might need other instances besides t'! Keep premise V7 x; ¢

SEFM: First-Order Logic CHALMERS 150925

30 /52

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula
We assume J7 x; ¢ is true
How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future
reference.

Sequent rule J-left
M [x/c]g = A

existsLeft
3drx; ¢ = A

» ¢ new constant of type 7

SEFM: First-Order Logic CHALMERS 150925 31/52

Proving Validity of First-Order Formulas Cont’d

Using an equation between terms

We assume t = t’ is true

How is such a fact used in a mathematical proof?

Use x = y—1 to simplify x+1/y x=y-1=1=x+1/y
Replace x in conclusion with right-hand side of equation

We know: x+1/y equal to y—1+1/y x=y-1=1=y—-1+41/y

Sequent rule =-left

Me=t,[t/t'¢ = A Nt=t =[t/t'| ¢, A
applyEqlL applyEqR
Nt=t,p= A MNt=t = ¢,A

» Always replace left- with right-hand side (use eqSymm if necessary)

» t,t' variable-free terms of the same type

SEFM: First-Order Logic CHALMERS 150925 32/52

Proving Validity of First-Order Formulas Cont’d

Closing a subgoal in a proof
» We derived a sequent that is obviously valid

close true false

M¢=¢,A [= true, A T, false = A

» We derived an equation that is obviously valid

eqClose

l=t=tA

SEFM: First-Order Logic CHALMERS 150925 33 /52

Sequent Calculus for FOL at One Glance

left side, antecedent right side, succedent
v rvaX; Qb, [X/t/]¢:>A r:>[X/C]¢,A
Vrx; ¢ = A =Vrx; ¢, A
. I x/clé = A = [x/t'|¢, I7x; ¢, A
3drx; ¢ = A = 3d7x; ¢, A
| Lt=t=[t/t']¢,A
B Mt=t = ¢,A Fr=t=tA
(+ application rule on left side)
» [t/t'] ¢ is result of replacing each occurrence of t in ¢ with ¢/
» t,t' variable-free terms of type 7
» ¢ new constant of type 7 (occurs not on current proof branch)
» Equations can be reversed by commutativity
SEFM: First-Order Logic CHALMERS 150925 34 /52

Recap: ‘Propositional’ Sequent Calculus Rules

main | left side (antecedent) right side (succedent)
. = ¢, A o= A
n A S h—— v
R R S — M= A
q Mo, v= A = ¢, A M=y, A
an
Mo A=A = ¢ A, A
Moo= A My = A N=¢, y,A
or
LoVvViy=A = ¢V YA
. = ¢, A MLy = A o=y A
m
me Moo= A M= ¢ 0,A
close ——— true ——— false ———
o= ¢ A = true, A I false = A
SEFM: First-Order Logic CHALMERS 150925 35 /52

Proving Validity of First-Order Formulas Cont’d

Example (A simple theorem about binary relations)

*
p(c.d), Vy; p(c,y) = p(c,d), 3x; p(x, y)
p(c,d), Yy; p(c,y) = Ix; p(x,d)
Vy; p(c,y) = 3 x; p(x,d)

Yy p(c,y) = Yy 3x; p(x,y)
3x; Vyi p(x,y) = Vy; 3% p(x, y)

Untyped logic: let static type of x and y be T
J-left: substitute new constant ¢ of type T for x
V-right: substitute new constant d of type T for y
V-left: free to substitute any term of type T for y, choose d
J-right: free to substitute any term of type T for x, choose ¢

Close
mao

e
SEFMT First-Order Logic CHALMERS 150925

36/5

Proving Validity of First-Order Formulas Cont’d

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further
that x divides y.

Show: (y/x)*x =y (') is division on integers, i.e. the equation is not
always true, e.g. x =2,y = 1)

Proof: We know x divides y, i.e. there exists a k such that kxx = y.
Let now c denote such a k. Hence we can replace y by ¢ * x on the
right side. ... [

(=0 =0 crx=y= (-9 rx=y
“(x=0),~(y=0),cxx=y=(y/x)xx=y
—(x=0),(y =0),3int k; kxx=y = (y/x)xx =y

SEFM: First-Order Logic CHALMERS 150925 37 /52

Features of the KeY Theorem Prover

Demo

rel.key, twolnstances.key

Feature List

>

>

>

Can work on multiple proofs simultaneously (task list)
Proof trees visualized as JAVA Swing tree

Point-and-click navigation within proof

Undo proof steps, prune proof trees

Pop-up menu with proof rules applicable in pointer focus
Preview of rule effect as tool tip

Quantifier instantiation and equality rules by drag-and-drop
Possible to hide (and unhide) parts of a sequent

Saving and loading of proofs

SEFM:

First-Order Logic CHALMERS 150925

38/ 52

Literature for this Lecture

essential:
» W. Ahrendt, Using KeY Chapter 10 in [KeYbook]

» W. Ahrendt, S. Grebing Using the KeY Prover
to appear in the new KeY Book (see Google group)

further reading:
» M. Giese, First-Order Logic, Chapter 2 in [KeYbook]

KeYbook B. Beckert, R. Hihnle, and P. Schmitt, editors, Verification
of Object-Oriented Software: The KeY Approach, vol 4334
of LNCS (Lecture Notes in Computer Science), Springer,
2006 (access via Chalmers library — E-books — Lecture
Notes in Computer Science)

SEFM: First-Order Logic CHALMERS 150925 39 /52

Part Il

First-Order Semantics

SEFM: First-Order Logic CHALMERS 150925 40 /52

First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
> In first-order logic we must assign meaning to:

» variables bound in quantifiers
» constant and function symbols
> predicate symbols

» Each variable or function value may denote a different item

» Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)
1. A collection of typed universes of items
2. A mapping from variables to items
3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

SEFM: First-Order Logic CHALMERS 150925

41752

First-Order Domains/Universes

1. A collection of typed universes of items

Definition (Universe/Domain)

A non-empty set D of items is a universe or domain
Each element of D has a fixed type given by 6 : D — 7

» Notation for the domain elements of type 7 € T
D" ={deD|id)=r1}
» Each type 7 € 7 must ‘contain’ at least one domain element:

DT £ ()

SEFM: First-Order Logic CHALMERS 150925 42 /52

First-Order States

3. A mapping from function arguments to function values

4. The set of argument tuples where a predicate is true

Definition (First-Order State)

Let D be a domain with typing function ¢
Let f be declared as 7 f(71,...,7/);

Let p be declared as p(71,...,7/);

Let Z(f) : D™ x --- x D™ — DT

Let Z(p) S D™ x --- x D"

Then § = (D, 4,Z) is a first-order state

SEFM: First-Order Logic CHALMERS

150925

43752

First-Order States Cont’d

Example

Signature: int i; short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

(i) =17 , _
73) =17 pmt Pt | in 7(<)?
Z(obj) = o (2,2) F
- 217)| T
D™ | I(f) (17,2)| F
2| 2 (17,17) | F
17| 2

One of uncountably many possible first-order states!

SEFM: First-Order Logic CHALMERS 150925 44 /52

Semantics of Reserved Signature Symbols

Definition
Equality symbol = declared as = (T, T)

Interpretation is fixed as Z(=) = {(d,d) | d € D}
“Referential Equality” (holds if arguments refer to identical item)

Exercise: write down the predicate table for example domain

SEFM: First-Order Logic CHALMERS 150925 45 /52

Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them

» First-order formulas and terms have no access to domain

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this state, necessarily Z(obj1) = Z(obj2) = o

SEFM: First-Order Logic CHALMERS 150925 46 /52

Variable Assignments

2. A mapping from variables to objects

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment 3 maps variables to domain elements
It respects the variable type, i.e., if x has type 7 then §(x) € DT

Definition (Modified Variable Assignment)
Let y be variable of type 7, 8 variable assignment, d € D7:

B(x) ;:{ PRl

SEFM: First-Order Logic CHALMERS 150925

4752

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)
vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

» vals g(x) = B(x)
> Va/‘g’ﬁ(f(tl, 59009 tr)) = Z(f)(valgwg(tl), 0004 Va/‘gﬁ(tr))

SEFM: First-Order Logic CHALMERS 150925

48 /52

Semantic Evaluation of Terms Cont’d

Example

Signature: int i; short j; int f(int);
D = {17, 2, o} where all numbers are short
Variables: Object obj; int x;

int
7(i) = 17 D Z(f) Va-r g
7(3) = 17 2| 17 obj | o
17| 2 x| 17
> vals s(£(£(1))) ?
> Valsﬁ(x) ?
CHALMERS 150925 49 /52

SEFM: First-Order Logic

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

» vals g(p(t1,...,tr) =T iff (valsg(t1),...,valsg(tr)) € Z(p)

> valsg(dAY) =T iff valsg(¢) =T and vals s(v) = T

> ...as in propositional logic

> valsg(V7 x; ¢) =T iff valggs(¢) =T forall d € D7

> valsg(37 x; ¢) =T iff valgga(¢) = T for at least one d € D7

SEFM: First-Order Logic CHALMERS 150925 50 /52

Semantic Evaluation of Formulas Cont’d

Example

Signature: short j; int f(int); Object obj; <(int,int);
D = {17, 2, o} where all numbers are short

I(_j) =17 Dint % Dil’lt n I(<)7
pint | 7(f) (2,17) T
2] 2 (17,2) F
17| 2 (17,17) F
> Va/gﬁ(f(j) <j) ?
> vals g(Jint x; f(x) =x) 7
» vals g(V0Object ol; V0Object 02; ol = 02) 7
SEFM: First-Order Logic

CHALMERS 150925

51 /52

Semantic Notions

Definition (Satisfiability, Truth, Validity)

vals g(¢) = T (¢ is satisfiable)
SE¢ iff forall B :valsg(¢) =T (¢ istruein S)
=X0) iff forallS: SkEo@ (¢ is valid)

Closed formulas that are satisfiable are also true: one top-level notion J

Example
» f(j) <jistruein S
» Jdint x; i = x is valid

» Jint x; =(x = x) is not satisfiable

SEFM: First-Order Logic CHALMERS 150925 52 /52

	The Language of FOL
	FO Signatures
	FO Terms
	FO Formulas
	Interpretations, Validity
	Useful Validities

	Sequent Calculus for FOL
	KeY Theorem Prover

	First-Order Semantics
	Domain
	State
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions

