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Where Are We?

before specification of JAVA programs with JML
now dynamic logic (DL) for resoning about JAVA programs
after that generating DL from JML+JAva
+ verifying the resulting proof obligations
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Motivation

Consider the method

public void doubleContent (int[] a) {
int i = 0;
while (i < a.length) {
ali] = al[i] * 2;
i++;

}
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Motivation

Consider the method

public void doubleContent (int[] a) {
int i = 0;
while (i < a.length) {
ali] = al[i] * 2;
i++;
}
}

We want a logic/calculus allowing to express/prove properties like, e.g.:
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Motivation

Consider the method

public void doubleContent (int[] a) {
int i = 0;
while (i < a.length) {
ali] = al[i] * 2;
i++;

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a # null
then doubleContent terminates normally
and afterwards all elements of a are twice the old value
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Motivation Cont’'d

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows:
(assuming a suitable signature)

a # null
A a# old.a
AVint i;((0 <iAi < a.length) — afi] = old-a[i])
— (doubleContent(a) ;)
Vint i;((0 <iAi < a.length) — af[i] = 2% old-a[i])
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Motivation Cont’'d

One such logic is dynamic logic (DL)

The above statement can be expressed in DL as follows:
(assuming a suitable signature)

a # null
A a# old.a
AVint i;((0 <iAi < a.length) — afi] = old-a[i])
— (doubleContent(a) ;)
Vint i;((0 <iAi < a.length) — af[i] = 2% old-a[i])

Observations
» DL combines first-order logic (FOL) with programs
» Theory of DL extends theory of FOL
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Today

introducing dynamic logic for JAVA

> recap first-order logic (FOL)
» semantics of FOL
» dynamic logic = extending FOL with

» dynamic interpretations
» programs to describe state change

SEFM: DL 1 CHALMERS/GU 151006

6/46



Repetition: First-Order Logic

Signature

A first-order signature ¥ consists of
> aset Ty of types
> a set Fy of function symbols

» a set Py of predicate symbols
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Repetition: First-Order Logic

Signature

A first-order signature ¥ consists of
> aset Ty of types
> a set Fy of function symbols

» a set Py of predicate symbols

Type Declarations

> T X; ‘variable x has type 7’
> p(71,...,7r); ‘predicate p has argument types 7y,..., 7,
» 7 f(71,...,7/); ‘function f has argument types 71,...,7;

and result type 7'’
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Part Il

First-Order Semantics
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First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
» In first-order logic we must assign meaning to:

» function symbols (incl. constants)
> predicate symbols

» Respect typing: int i, List 1 must denote different elements
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First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
» In first-order logic we must assign meaning to:

» function symbols (incl. constants)

> predicate symbols

» Respect typing: int i, List 1 must denote different elements

What we need (to interpret a first-order formula)
. A collection of typed universes of elements
A mapping from variables to elements

For each function symbol, a mapping from arguments to results

SRR

For each predicate symbol, a set of argument tuples where that
predicate holds
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First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set D of elements is a universe or domain.
Each element of D has a fixed type given by 6 : D — Ty

> Notation for the domain elements of type 7 € Tx:
D" ={deD|d)=r1}
» Each type 7 € Ty must ‘contain’ at least one domain element:

DT £ ()
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First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)
Let D be a domain with typing function J.
For each f be declared as 7 f(71,...,7);

and each p be declared as p(1,...,7/);
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First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)
Let D be a domain with typing function J.
For each f be declared as 7 f(71,...,7);

and each p be declared as p(1,...,7/);

Z(f) is a mapping Z(f) : D™ X --- x D" — DT
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First-Order States

3. For each function symbol, a mapping from arguments to results
4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)
Let D be a domain with typing function J.
For each f be declared as 7 f(71,...,7);

and each p be declared as p(1,...,7/);

Z(f) is a mapping Z(f) : D™ X --- x D" — DT
Z(p)isaset Z(p) CD™ x --- x D™
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First-Order States

3. For each function symbol, a mapping from arguments to results
4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)
Let D be a domain with typing function J.
For each f be declared as 7 f(71,...,7);

and each p be declared as p(1,...,7/);

Z(f) is a mapping Z(f) : D™ X --- x D" — DT
Z(p)isaset Z(p) CD™ x --- x D™

Then S = (D, 4,7) is a first-order state
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First-Order States Cont’d

Example
Signature: int i; int j; int f(int); Object obj; <(int,int);
D = {17, 2, o}
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First-Order States Cont’d

Signature: int i; int j; int f(int); Object obj; <(int,int);

pint , pint [ 7()?
(2,2) no
(2,17) yes
(17,2) no
(17,17) no

Example
D = {17, 2, o}
The following Z is a possible interpretation:
Z(i)=17
1(j) = 17
Z(obj) =0
DInt | 7(f)
2| 2
17| 2

One of uncountably many possible first-order states!
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Semantics of Reserved Signature Symbols

Definition
Reserved predicate symbol for equality: =
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Interpretation is fixed as Z(=) =
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Semantics of Reserved Signature Symbols

Definition
Reserved predicate symbol for equality: =

Interpretation is fixed as Z(=) = {(d,d) | d € D}
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Semantics of Reserved Signature Symbols

Definition
Reserved predicate symbol for equality: =

Interpretation is fixed as Z(=) = {(d,d) | d € D}

Exercise: write down all elements of the set Z(=) for example domain
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Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them

» First-order formulas and terms have no access to domain

Example

Signature: Object objl, obj2;
Domain: D = {o}
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Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them

» First-order formulas and terms have no access to domain

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this state, necessarily Z(obj1) = Z(obj2) = o
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Variable Assignments

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment 8 maps variables to domain elements.
It respects the variable type, i.e., if x has type 7 then (x) € DT.
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)

vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

> valsp(x) =
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)

vals 3 : Term — D such that vals g(t) € D™ for t € Term,:
> vals,5(x) = A(x)
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)
vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

» vals g(x) = B(x)
> vals g(f(t1,...,t/)) =
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Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)
vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

» vals g(x) = B(x)
> Va/‘g’ﬁ(f(tl, 59009 tr)) = Z(f)(valgwg(tl), 0004 Va/‘gﬁ(tr))
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Semantic Evaluation of Terms Cont’d

Example

Signature: int i; int j; int f(int);

D ={17, 2, o}
Variables: Object obj; int x;

pint Z(f) Var | 3
2| 17 obj | o
17 2 x| 17

SEFM: DL 1
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Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)
Let y be variable of type 7, 8 variable assignment, d € D":

R A
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Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)
Let y be variable of type 7, 8 variable assignment, d € D":

R A

Needed for semantics of quantifiers.
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

> Valsjﬁ(p(tl, aoog tr)) =T iff (Va/‘g’ﬁ(tl),

ce valgﬁ(t,)) S I(p)
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

> Valsjﬁ(p(tl,...,tr)) =T iff (Va/‘g’ﬁ(tl),...,Valgﬁ(tr)) EI(p)
> Valgwg((ﬁ A w) =T iff Va/5”3(¢) =T and Valgwg(w) =T
» (also true, false, V, =, —, <> like valuation in propositional logic)
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For
Valsjﬁ(p(tl, ce tr)) =T iff (Va/‘g’ﬁ(tl), ce valgﬁ(t,)) S I(p)

Valgwg((ﬁ VAN w) =T iff Va/5”3(¢) =T and Valgwg(w) =T
(also true, false, V, =, —, <> like valuation in propositional logic)

vals g(V7 x; ¢) = T iff

\4

\4

\4

v
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For
Valsjﬁ(p(tl, ce tr)) =T iff (Va/‘g’ﬁ(tl), ce valgﬁ(t,)) S I(p)

Valgwg((ﬁ VAN w) =T iff Va/5”3(¢) =T and Valgwg(w) =T
(also true, false, V, =, —, <> like valuation in propositional logic)

vals g(V7 x; ¢) = T iff valsﬁg(gb) =T forall d € DT

\4

\4

\4

v
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

» vals g(p(t,...,t,)) =T iff (valsg(tr),...,valsg(t;)) € Z(p)
» valsg(¢ A1) =T iff  valsg(¢) =T and valsg(y)) =T

» (also true, false, V, =, —, <> like valuation in propositional logic)
> valsg(V7 x; ¢) =T iff valggy(¢) =T forall d € D7

» valsg(A7 x; ¢) =T iff
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Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

> Valsjﬁ(p(tl, 0000 tr)) =T iff (Va/‘g’ﬁ(tl), YT valgﬁ(t,)) S I(p)
> Valgwg((ﬁ AN w) =T iff Va/5”3(¢) =T and Valgwg(w) =T

» (also true, false, V, =, —, <> like valuation in propositional logic)
> valsg(V7 x; ¢) =T iff valggy(¢) =T forall d € D7

> valsg(37 x; ¢) =T iff valggs(¢) = T for at least one d € D7
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Semantic Evaluation of Formulas Cont’d

Example

Signature: int j; int f(int);
D = {17, 2, o}, DInt —

{17, 2}, pObject _

I(j) =17
Z(obj) =
Dint | 7(f)
2] 2
17| 2

Object obj; <(int,int);

{0}
pint , pint [ 7(<)?
(2,2) F
2,17)| T
(17,2) F
(17,17) F
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Semantic Evaluation of Formulas Cont’d

Example

Signature: int j; int f(int); Object obj; <(int,int);
D = {17, 2, o}, DIt = (17, 2}, pObIect — (5}

Z() = 17 pint S pint [ 7(<)?
L(ob) = 22| F
pint | 7(f) (2,17) T
2] 2 (17,2)| F
17| 2 7,17 | F
> Va/gﬁ(f(j) <j) ?
> vals g(Jint x; f(x) =x) 7
» vals g(V0Object ol; V0Object 02; ol = 02) 7
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Semantic Notions

Definition (Truth, Satisfiability, Validity)
vals g(¢) = T (S, satisfies ¢)
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Semantic Notions

Definition (Truth, Satisfiability, Validity)

vals g(¢) = T (S, satisfies ¢)
SE¢ iff forall 8:valsg(¢) =T (¢ istruein S)
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Semantic Notions

Definition (Truth, Satisfiability, Validity)

vals g(¢) = T (S, satisfies ¢)
SE¢ iff forall 8:valsg(¢) =T (¢ istruein S)
SAT(¢) iff forsome S:S ¢ (¢ is satisfiable)
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Semantic Notions

Definition (Truth, Satisfiability, Validity)

vals g(¢) = T (S, satisfies ¢)
SE¢ iff forall 8:valsg(¢) =T (¢ istruein S)
SAT(¢) iff forsome S:S ¢ (¢ is satisfiable)
Eo iff forallS: SkE@ (¢ is valid)
SEFM: DL 1 CHALMERS/GU 151006 21/ 46




Semantic Notions

Definition (Truth, Satisfiability, Validity)

vals g(¢) = T (S, satisfies ¢)
SE¢ iff for all B:valsg(¢) =T (¢ istrueinS)
SAT(¢) iff forsome S:S ¢ (¢ is satisfiable)
Eo iff forallS: SkE@ (¢ is valid)
Example
» f(j) <jistruein S
» Jint x; i = x is valid
» Jint x; =(x = x) is not satisfiable
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Towards Dynamic Logic
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Towards Dynamic Logic

Reasoning about Java programs requires extensions of FOL
> JAVA type hierarchy
» JAVA program variables

» JAVA heap for reference types (next lecture)

SEFM: DL 1 CHALMERS/GU 151006

23746



Type Hierarchy

Definition (Type Hierarchy)

» Ty is set of types
» Subtype relation E C Ty x Ty with top element T
» TC T forall T e Tx
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Type Hierarchy

Definition (Type Hierarchy)

» Ty is set of types
» Subtype relation E C Ty x Ty with top element T
» TC T forall T e Tx

Example (A Minimal Type Hierarchy)

Ty ={T}
All signature symbols have same type T

Example (Type Hierarchy for Java)

(see next slide)
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Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy

T

any

int boolean Object Heap Field

@ser—defined cIasE

A

Null

Each interface and class in APl and in target program becomes type
with appropriate subtype relation
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Subset of Types

Signature based on Java’s type hierarchy

int and boolean are the only types for today
Class, interface types, etc., in next lecture

SEFM: DL 1 CHALMERS/GU
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Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

> Values of fields in a certain range

» Property (invariant) of a subclass implies property of a superclass

Considers only one program state at a time
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Modelling Dynamic Properties

Only static properties expressable in typed FOL, e.g.,

> Values of fields in a certain range
» Property (invariant) of a subclass implies property of a superclass

Considers only one program state at a time
Goal: Express behavior of a program, e.g.:
If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge

151006 27 / 46

SEFM: DL 1 CHALMERS/GU



Requirements

Requirements for a logic to reason about programs
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Requirements

Requirements for a logic to reason about programs

» can relate different program states, i.e., before and after execution,
within a single formula
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Requirements

Requirements for a logic to reason about programs

» can relate different program states, i.e., before and after execution,
within a single formula

> program variables are represented by
constant symbols that depend on current program state
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Requirements

Requirements for a logic to reason about programs

» can relate different program states, i.e., before and after execution,

within a single formula

> program variables are represented by
constant symbols that depend on current program state

Dynamic Logic meets the above requirements
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Dynamic Logic

(Java) Dynamic Logic

Typed FOL
> -+ programs p
» + modalities (p)¢, [p]¢ (p program, ¢ DL formula)
» + ... (later)
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Dynamic Logic

(Java) Dynamic Logic

Typed FOL
> -+ programs p
» + modalities (p)¢, [p]¢ (p program, ¢ DL formula)
» + ... (later)

An Example
i>5 — [i =1+ 10;]i>15

Meaning?
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Dynamic Logic

(JavAa) Dynamic Logic

Typed FOL
> -+ programs p
» + modalities (p)¢, [p]¢ (p program, ¢ DL formula)
» + ... (later)

An Example
i>5 — [i =1+ 10;]i>15

Meaning?
If program variable i is greater than 5 in current state, then after
executing the JAVA statement “i = i + 10;", i is greater than 15

SEFM: DL 1 CHALMERS/GU 151006
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Program Variables

Dynamic Logic = Typed FOL + ...

i>5 — [i =1+ 10;]i>15
Program variable i refers to different values before and after execution

» Program variables such as i are state-dependent constant symbols

» Value of state-dependent symbols changeable by a program
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Program Variables

Dynamic Logic = Typed FOL + ...

i>5 — [i =1+ 10;]i>15
Program variable i refers to different values before and after execution

» Program variables such as i are state-dependent constant symbols

» Value of state-dependent symbols changeable by a program

Three words one meaning: | state-dependent, non-rigid, flexible
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Rigid versus Flexible Symbols

Signature of program logic defined as in FOL, but in addition, there are
program variables
Rigid versus Flexible

» Rigid symbols, meaning insensitive to program states

> First-order variables (aka logical variables)
» Built-in functions and predicates such as 0,1,...,+,*%,...,<,...

» Non-rigid (or flexible) symbols, meaning depends on state.
Capture side effects on state during program execution

» Program variables are flexible

Any term containing at least one flexible symbol is called flexible J
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Signature of Dynamic Logic

Definition (Dynamic Logic Signature)
ZZ(P):, Fs, PVs, a):), F):ﬂPVz:@
(Rigid) Predicate Symbols Py = {>, >=,...}

(Rigid) Function Symbols Fs ={+, —, %,0,1,...}
Non-rigid Program variables e.g. PVx = {i, j,ready,...}

Standard typing of JAVA symbols: boolean TRUE; <(int,int); ...

SEFM: DL 1 CHALMERS/GU 151006
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Dynamic Logic Signature - KeY input file

\sorts {

// only additional sorts (int, boolean, any predefined)
}
\functions {

// only additional rigid functions

// (arithmetic functions like +,- etc., predefined)

}

\predicates { /* same as for functions */ }

Empty sections can be left out J
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Dynamic Logic Signature - KeY input file

\sorts {
// only additional sorts (int, boolean, any predefined)
}
\functions {
// only additional rigid functions
// (arithmetic functions like +,- etc., predefined)
}

\predicates { /* same as for functions */ }
\programVariables { // non-rigid

int i, j;
boolean ready;

Empty sections can be left out J
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Again: Two Kinds of Variables

Rigid:
Definition (First-Order/Logical Variables)

Typed logical variables (rigid), declared locally in quantifiers as T x;
They may not occur in programs!

Non-rigid:

Program Variables
» Are not FO variables
» Cannot be quantified

» May occur in programs (and formulas)
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Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.
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Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.

Example
Signature for FSymy: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int);
i=0;
r=0;
while (i<n) {
i=i+1;
r=r+i;
}

r=r+r-n;
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Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.

Example
Signature for FSymy: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int);
i=0;
r=0;
while (i<n) {
i=i+1;
r=r+i;
}

r=r+r-n;

Which value does the program compute in r? J
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Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

» (p)¢ (diamond)
> [pl¢ (box)

with p a program, ¢ another DL formula
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Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

» (p)¢ (diamond)
> [pl¢ (box)

with p a program, ¢ another DL formula

Intuitive Meaning

» (p)¢: p terminates and formula ¢ holds in final state
(total correctness)
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Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

» (p)¢ (diamond)
> [pl¢ (box)

with p a program, ¢ another DL formula

Intuitive Meaning
» (p)¢: p terminates and formula ¢ holds in final state
(total correctness)

> [p]¢: If p terminates then formula ¢ holds in final state
(partial correctness)
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Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

» (p)¢ (diamond)
> [pl¢ (box)

with p a program, ¢ another DL formula

Intuitive Meaning
» (p)¢: p terminates and formula ¢ holds in final state
(total correctness)

> [p]¢: If p terminates then formula ¢ holds in final state
(partial correctness)

Attention: JAVA programs are deterministic, i.e., if a JAVA program
terminates then exactly one state is reached from a given initial state.
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.

Give the meaning in natural language:
1.i=o0ldi— (i =i+ 1;)i>oldi
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i =o0ld.i — [while(true){i = old_i - 1;}]i >old.i
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .
2. i =o0ld.i — [while(true){i = old.i - 1;}]i > old i
If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .
2. i =o0ld.i — [while(true){i = old.i - 1;}]i > old i
If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. Vx. ((prog;) i=x < (prog,) i =x)
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Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .
2. i =o0ld.i — [while(true){i = old_i - 1;}]i >old.i
If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.
3. Vx. ((prog;) i=x < (prog,) i =x)
prog; and prog, are equivalent concerning termination and the
final value of i.
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Dynamic Logic: KeY Input File

\programVariables { // Declares global program variables
int i;
int old_i;

}
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Dynamic Logic: KeY Input File

\programVariables { // Declares global program variables
int i;
int old_i;

}

\problem { // The problem to wverify is stated here
i = old_i -> \«{ i=1i+1; IIN>1i>o0ld_i
}
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Dynamic Logic: KeY Input File

\programVariables { // Declares global program variables

int i;
int old_i;

}

\problem { // The problem to verify is stated here
i = o0ld_i -> \<{ i=1i+1; IIN>1i>o0ld_i
}

Visibility
» Program variables declared globally can be accessed anywhere

» Program variables declared inside a modality such as
“pre — (int j; p)post” only visible in p
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Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))
» Each FOL formula is a DL formula

» If p is a program and ¢ a DL formula then {ngj} is a DL formula

» DL formulas closed under FOL quantifiers and connectives
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Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

» Each FOL formula is a DL formula

» If p is a program and ¢ a DL formula then {ngj} is a DL formula
» DL formulas closed under FOL quantifiers and connectives

» Program variables are flexible constants: never bound in quantifiers
» Program variables need not be declared or initialized in program

» Programs contain no logical variables

» Modalities can be arbitrarily nested, e.g., (p)[q]¢
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

» Vint y; (({(x = 25)x=y) «< ((x = 1; x++;)x=y))
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Vint y; (((x = 25)x=y) & ((x = 1; x++5)x=y))
Well-formed if FSym contains int x;
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
» Vint y; (((x = 2;5)x=y) © ((x = 15 x++5)x=y))
Well-formed if FSym contains int x;
» Jint x; [x = 1;](x =1)
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
» Vint y; (((x = 2;5)x=y) < ((x = 1; x++5)x=y))
Well-formed if FSym contains int x;
» Jint x; [x = 1;](x =1)

Not well-formed, because logical variable occurs in program

SEFM: DL 1

CHALMERS/GU 151006

40/ 46



Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
» Vint y; (((x = 2;5)x=y) < ((x = 1; x++5)x=y))
Well-formed if FSym contains int x;
» Jint x; [x = 1;](x =1)
Not well-formed, because logical variable occurs in program
» (x = 1;)([while (true) {}]false)
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Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
» Vint y; (((x = 2;5)x=y) < ((x = 1; x++5)x=y))
Well-formed if FSym contains int x;
» Jint x; [x = 1;](x =1)
Not well-formed, because logical variable occurs in program
» (x = 1;)([while (true) {}]false)

Well-formed if PVs contains int x;
program formulas can be nested

SEFM: DL 1 CHALMERS/GU 151006

40 /46



Dynamic Logic Semantics: States

First-order state can be considered as program state

» Interpretation of (non-rigid) program variables can vary from state
to state
> Interpretation of rigid symbols is the same in all states

(e.g., built-in functions and predicates)

Program states as first-order states
We identify first-order state S = (D, 4, Z) with program state.

> Interpretation Z only changes on program variables.
= only record values of variables € PVx
> Set of all states S is called States
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Kripke Structure

Definition (Kripke Structure)
Kripke structure or Labelled transition system K = (States, p)

States § = (D, 0,Z) € States

Transition relation p : Program — (States — States)
p(p)(S1) = &2
iff.
program p executed in state S; terminates and its final state is So,
otherwise undefined.

v

v

v

p is the semantics of programs € Program

p(p)(S) can be undefined (‘—'):
p may not terminate when started in S

v

v

Our programs are deterministic (unlike PROMELA):
p(p) is a function (at most one value)
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)
> SE(p)o i p(p)(S) is defined and p(p)(S) = &

(p terminates and ¢ is true in the final state after execution)
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)
> SE(p)o i p(p)(S) is defined and p(p)(S) = &

(p terminates and ¢ is true in the final state after execution)
» sk [ple iff p(p)(S) E ¢ whenever p(p)(S) is defined

(If p terminates then ¢ is true in the final state after execution)
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)
> SE(p)o i p(p)(S) is defined and p(p)(S) = &

(p terminates and ¢ is true in the final state after execution)
» sk [ple iff p(p)(S) E ¢ whenever p(p)(S) is defined

(If p terminates then ¢ is true in the final state after execution)

A DL formula ¢ is valid iff S |= ¢ for all states S.
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Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)
> SE(p)o i p(p)(S) is defined and p(p)(S) = &
(p terminates and ¢ is true in the final state after execution)
» sk [ple iff p(p)(S) E ¢ whenever p(p)(S) is defined

(If p terminates then ¢ is true in the final state after execution)

A DL formula ¢ is valid iff S |= ¢ for all states S.

» Duality: (p)o¢ iff —[p]—-¢
Exercise: justify this with help of semantic definitions

» Implication: if (p)¢ then [p]¢
Total correctness implies partial correctness

> converse is false
» holds only for deterministic programs
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More Examples

valid?
meaning?

Example

Vry (Px=y) < (@x=y))
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More Examples

valid?
meaning?

Example
Vry ((Px=y) & (@x=y))
Not valid in general

Programs p and q behave equivalently on variable 7 x
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More Examples

valid?
meaning?

Example
vy (Plx=y) & (@x=y))
Not valid in general

Programs p and q behave equivalently on variable 7 x

Example

dry, (x=y — (p)true)
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More Examples

valid?
meaning?

Example
Vry ((Px=y) & (@x=y))
Not valid in general

Programs p and q behave equivalently on variable 7 x

Example
dry, (x=y — (p)true)
Not valid in general

Program p terminates if initial value of x is suitably chosen
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Semantics of Programs

In labelled transition system K = (States, p):
p : Program — (States — States) is semantics of programs p € Program

p defined recursively on programs J
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Semantics of Programs

In labelled transition system K = (States, p):
p : Program — (States — States) is semantics of programs p € Program

p defined recursively on programs J

Example (Semantics of assignment)

States S interpret program variables v with Zgs(v)

p(x=t;)(S) = &’ where &’ identical to S except Zg/(x) = vals(t)

SEFM: DL 1 CHALMERS/GU 151006 45 / 46



Semantics of Programs

In labelled transition system K = (States, p):
p : Program — (States — States) is semantics of programs p € Program

p defined recursively on programs J

Example (Semantics of assignment)

States S interpret program variables v with Zgs(v)

p(x=t;)(S) = &’ where &’ identical to S except Zg/(x) = vals(t)

Very advanced task to define p for JAVA = Not done in this course
Next lecture, we go directly to calculus for program formulas!
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Literature for this Lecture

» W. Ahrendt, Using KeY Chapter 10 in [KeYbook]

> up-to-date alternative:
W. Ahrendt, S. Grebing Using the KeY Prover
to appear in the new KeY Book (see Google group)

» Dynamic Logic (Sections 3.1, 3.2, 3.4, 3.5, 3.6.1, 3.6.3, 3.6.4),
Chapter 3 in [KeYbook]
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