
Graphs (chapter 13)



Terminology

A graph is a data structure consisting of 
nodes (or vertices) and edges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)

A B

CED



Nodes are stations
Edges are “bits of line”



Nodes are components
Edges are connections



Seven bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Graphs

Graphs are used all over the place:
● communications networks
● many of the algorithms behind the internet
● maps, transport networks, route finding
● etc.

Anywhere where you have connections or 
relationships!



More graphs

Graphs can be directed or undirected
● In an undirected graph, an edge connects two 

nodes symmetrically (we draw a line between the 
two nodes)

● In a directed graph, the edge goes from the source 
node to the target node (we draw an arrow from 
the source to the target)

A tree is a special case of a directed graph
● Edge from parent to child



Drawing graphs

We draw nodes as points, and edges as 
lines (undirected) or arrows (directed):

V = {A, B, C, D, E}
E = {(A, B), (A, D), 
         (C, E), (D, E)}

V = {A, B, C, D, E}
E = {(A, B), (B, A), (B, E),
        (D, A), (E, A), (E, C), (E, D)}



Drawing graphs

The layout of the graph is completely 
irrelevant: only the nodes and edges 
matter

V = {0, 1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}



Weighted graphs

In a weighted graph, each edge has a 
number, its weight:

Often, graphs have extra data attached to 
the edges – weights are one case of this



Paths and cycles

Two vertices are adjacent if there is an 
edge between them: Cleveland and

Pittsburgh are
adjacent

Pittsburgh and
Philadelphia are

adjacent



Paths and cycles

Two vertices are adjacent if there is an 
edge between them: Cleveland and

Philadelphia are
not adjacent



Paths and cycles

In a directed graph, the target of an edge 
is adjacent to the source:

A

ED

B

C

A is adjacent to D,
but D is not
adjacent to A



Paths and cycles

A path is a sequence of vertices where 
each vertex is adjacent to its predecessor:



Paths and cycles

In a simple path, no node or edge appears 
twice, except that the path can start and 
end on the same node:

This path
is simple



Paths and cycles

In a simple path, no node or edge appears 
twice, except that the path can start and 
end on the same node:

This path
is not simple



Paths and cycles

A cycle is a simple path where the first 
and last node are the same – a graph is 
cyclic if it has a cycle, acyclic otherwise

This path is a cycle
and the graph

is cyclic



Connectedness

A graph is called connected if there is a 
path from every node to every other node

4

8

5

9

6 7

This graph is
connected



Connectedness

A graph is called connected if there is a 
path from every node to every other node

4

8

5

9

6 7

This graph is
not connected



Connectedness

If a graph is unconnected, it still consists 
of connected components

4

8

5

9

6 7

{4, 5} is a
connected

component

{6, 7, 8, 9} is a
connected

component



Connectedness

A single unconnected node is a connected 
component in itself

4

8 9

6 7

{4} is a
connected

component



How to implement a graph

Typically: adjacency list
● List of all nodes in the graph, and with each node 

store all the edges having that node as source



Adjacency list – undirected graph

Each edge appears twice, once for the 
source and once for the target node



How to implement a graph

Alternative – adjacency matrix
● 2-dimensional array

For an unweighted graph, 2-dimensional 
array of booleans
● a[i][j] = true if there is an edge between nodes i and j

For a weighted graph, the array contains 
weights instead of booleans
● a[i][j] = the weight, or a special value (e.g. infinity) if 

there is no edge

For an undirected graph, a[i][j] = a[j][i]



Adjacency matrices



Adjacency matrices – disadvantage

Adjacency matrices need a lot of memory for big graphs
● One bit for each pair of nodes
● So O(|V|2) memory, where |V| is the number of nodes

Adjacency lists only use memory for the nodes and edges 
that are actually present
● O(|V| + |E|), where |E| is the number of edges
● More like 64 bits for each node and edge

Adjacency lists normally better, but matrices good for:
● Small graphs (only one bit needed per pair of nodes)
● Dense graphs (1% or more (say) of pairs of nodes have 

edges between them) – most graphs are not dense!



Graphs implicitly

Very often, the data in your program 
implicitly makes a graph
● Nodes are objects
● Edges are references – if obj1.x = obj2 then there 

is an edge from obj1 to obj2

Sometimes, you can solve your problem 
by viewing your data as a graph and using 
graph algorithms on it
This is probably more common than 
using an explicit graph data structure!



Graph traversals

Many graph algorithms involve visiting 
each node in the graph in some 
systematic order
The two commonest methods are:
● depth-first search (DFS)
● breadth-first search (BFS)



Breadth-first search

A breadth-first search visits the nodes in 
the following order:
● First it visits some node (the start node)
● Then all the start node's neighbours (all nodes 

adjacent to it)
● Then their neighbours
● and so on

So it visits the nodes in order of how far 
away they are from the start node



Implementing breadth-first search

We maintain a queue of nodes that we are 
going to visit soon
● Initially, the queue contains the start node

We also remember which nodes we've 
already added to the queue
Then repeat the following process:
● Remove a node from the queue
● Visit it
● Find all adjacent nodes and add them to the queue, 

unless they've previously been added to the queue



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
0

Visit order:

Initially,
queue contains

start node



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0

Step 1:
remove node
from queue
and visit it



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
3 1

Visit order:
0

Step 2:
add adjacent nodes

to queue
(only unvisited ones)



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

0 is already
visited, so

we don't add
it to the queue



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2

Visit order:
0 3 1

Step 1:
remove node
from queue
and visit it



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

2 is already
in the queue, so

we don't add
it again



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7

Visit order:
0 3 1 2

Step 1:
remove node
from queue
and visit it



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
4 6 7 9 8

Visit order:
0 3 1 2

Step 2:
add adjacent nodes

to queue
(only unvisited ones)

Skip to the end...



Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:

Visit order:
0 3 1 2 4 
6 7 9 8 5

We reach step 1, but
the queue is empty,

and we're finished!



Breadth-first search tree

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph
(we do this when adding
a node to the queue)
By doing this we can
build a tree with the start node at the top
(the breadth-first search tree)
Starting at a node in the tree, and following it up 
to the root, gives us the shortest path from each 
node to the start node



Example: unweighted shortest path

We can represent a maze as a graph – nodes are 
junctions, edges are paths.
How can we find a path from the entrance to the exit?



Example: unweighted shortest path

A breadth-first search tree starting from the entrance 
gives us a path to any node (including the exit)
This path minimises number of junctions – each edge has 
the same cost, we call this the unweighted shortest path



Depth-first search

Depth-first search is an alternative search 
order that's easier to implement
To do a DFS starting from a node:
● visit the node
● recursively DFS all adjacent nodes (skipping any 

already-visited nodes)

Much simpler!



Example of a depth-first search
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2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0



Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3



Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2



Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2 9



Example of a depth-first search

0

2

3 1

9 8

4

7

6

5

0 visited0 unvisited

Visit order:

0 3 2 9 8



Depth-first search, alternative order

A variation of DFS, where we visit each node 
after visiting the adjacent nodes.
To do a DFS starting from a node:
● mark the node as visited
● recursively DFS all adjacent nodes (skipping any already-

visited nodes)
● visit the node itself

(Wikipedia calls the order of nodes a 
postordering, compared to a preordering for the 
normal DFS)
What order would we visit the nodes in on the 
previous example?



BFS vs DFS

BFS visits the nodes in a
“fair” order: the search area
widens gradually
E.g. on a tree: first visit
the root, then the root's
children, then grandchildren, and so on.
DFS will explore a whole branch of the tree 
before backtracking and trying a different 
branch – the order is much more unpredictable 
which makes it unsuitable for some algorithms
(e.g. on the tree to the right, you may explore 3 
directly after 0, or you may explore it last)



Implementing depth-first search

We maintain a stack of nodes that we are 
going to visit next
● Initially, the stack contains the start node

We repeat the following process:
● Remove a node from the stack
● Visit it
● Find all nodes adjacent to the visited node and 

add them to the stack, unless they have been 
visited or added to the stack already

We can also implement DFS
by taking the BFS algorithm
and using a stack instead of

a queue!

The recursive implementation
uses the call stack to do this

implicitly



Directed acyclic graphs

Here is a directed acyclic graph (DAG)
A DAG is a
directed graph
without cycles
That means:
once you
follow an
edge there is
no way back to the
source node – we can say that one node is 
after another in the graph



Example: topological sort

A topological sort of the nodes in a DAG is 
a list of all the nodes, such that if (u, v) is 
an edge, then u comes before v in the list
Every DAG has a
topological sort,
often several
012345678 is a
topological sort of
this DAG, but
015342678 isn't.



Example: topological sort

An example: if nodes are tasks, and an 
edge (u, v) means “task u must be done 
before task v”, then:
If the graph is a DAG
it means there
are no impossible
dependencies
between tasks
A topological sort gives
a valid order to do the tasks in



Topological sort

We can use a depth-first search to 
topologically sort the graph:
● Suppose that we do a DFS but using the alternative 

version where we visit each node only after visiting 
the adjacent nodes

● If (u, v) is an edge, we will then visit u after we visit v 
– we will only visit a node once we've visited all nodes 
that come after it

● This is the exact opposite order to what we want for a 
topological sort!

● So, to topologically sort a graph, do a DFS, then 
return the nodes in the reverse order you visited 
them



Summary

Graphs:
● many varieties – directed, undirected, weighted, unweighted
● all are variations on the same basic theme
● graphs can be cyclic or acyclic (directed acyclic graphs very common)
● paths, cycles, connected components

Implementing them:
● adjacency lists – good for sparse graphs
● adjacency matrix – good for dense graphs
● very often you don't use either, you just treat your set of objects as a 

graph!

Some basic algorithms:
● breadth-first and depth-first search
● unweighted shortest path using BFS
● topological sort using DFS
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