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The speaker 
•  MSc 1988 computer science and mathematics and 

PhD 1991, DIKU, Copenhagen University 
•  KU, DTU, KVL and ITU; and Glasgow U, AT&T Bell 

Labs, Microsoft Research UK, Harvard University 
•  Programming languages, software development, ... 
•  Open source software 

–  Moscow ML implementation, 1994… 
–  C5 Generic Collection Library, with Niels Kokholm, 2006… 
–  Funcalc spreadsheet implementation, 2014 
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Example life and pension products 
•  Pay 1m DKK on insured’s death, if before 65 

(term life insurance, GF115) 
•  Pay 1m DKK on the day insured turns 65, if alive 

(pure endowment, GF125) 
•  Pay 200k DKK/year from age 65 while insured is 

alive (life annuity, GF211) 
•  Pay 200k DKK/year while insured is disabled, 

alive, and not yet 65 (disability insurance, GF415) 
•  If insured dies before 65 years, pay 100k DKK/

year to spouse, if any, while alive (spouse 
pension, GF810) 

•  NB: Conditioned on insured’s life, unlike private 
savings (that pass to the estate) 
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Formalizing pension contracts 
•  Life-based state models 

•  States 
•  Transition intensities, eg mortality rate µad(t) 
•  Payment in state ba(t) eg. “while t>65 ...” 
•  Payment on transitions bad(t): “upon death ...” 
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Some basic concepts 
•  Prospective reserve 

–  the net present value of expected future payments 
•  Discount rate 

–  1 DDK today is worth r = 1.02 DDK a year from now 
•  Mortality 

–  Insured people die with a certain intensity (probability) 

•  Possible shocks, simulation scenarios: 
–  Interest rate: assume adverse (lower) discount rates, 

that is, less future interest earned on current funds 
–  Mortality rate: assume adverse mortality rates, eg. a 

cure for cancer (lower mortality), or a natural 
catastrophe or epidemic (higher mortality) 
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Reserve graph for Term Insurance 
Pay 1 krona to insured if dies before 65 
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The Actulus project, partners 
•  Edlund A/S 

–  software for the Danish pensions and life insurance 
industry (PFA, ATP, Nordea, Skandia, ...) 

–  200 people, math, CS, actuaries, many PhDs 
•  Department of Mathematical Sciences at 

Copenhagen University 
–  actuarial mathematics and numerical algorithms 

•  IT University of Copenhagen 
–  programming language technology, domain-specific 

languages, parallel programming 
–  David Christiansen, Peter Sestoft, BSc and MSc students 

•  Funding: Advanced Technology Foundation 
•  Project duration: April 2011 to March 2016 
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Goals of the Actulus project 
•  Overall: Establish a platform for definition of 

advanced life insurance and pension products 
and for efficient computations on them.  

•  But why?  
•  Huge societal importance in Denmark 

– Pension provisions 1,756bn DKK = 97% of GDP 
– Net increase is 50bn DKK per year (2013) 

•  Very long-term: Most contracts entered today 
(25 yr woman) will still be in force in 2070 
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And why now? 
•  Regulation: EU Solvency 2 

– Single market for insurance in Europe (2016) 
– Stronger requirements on risk evaluation 

•  Probability of 1-year insolvency: P(A - R < 0) < 0.5% 

– Stronger transparency requirements 
•  To Edlund, a challenge and an opportunity 

– Can they go beyond the domestic market? 
•  Technological opportunities 

– GPGPUs allow fast numerical solution of risk models 
•  Traditional closed-form formulas no longer suffice 

– Domain-specific languages for products and risk 
– Code generation from those languages 
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Why in Denmark? 
•  On sustainability of pension provisions: 

 
•  DK: Wide coverage, strong regulation, strong 

formalization, collaboration and competition 
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”We are the country that’s best 
prepared. In general, Sweden, Finland 
and the Netherlands are quite well 
prepared, but we are even further 
ahead.  [...] in today’s Europe you will 
not find a better situation." 

Allan Polack, chair of working group 
on future pension systems in 
Europe, quoted in Nordea Private 
Banking magazine, March 2013 



Actulus Modeling Language, 
A domain-specific language 

•  What? 
– Notation specially designed for the application area 
– Supported by tools: editors, checkers, compilers ... 

•  A state model: insured is alive or dead 

•  A contract: Pay 200000/year from year n 
while insured is alive  
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statemodel LifeDeath where 
  states      = alive 
              | dead 
  transitions = alive -> dead 

contract GF211(n : TimePoint) : LifeDeath where 
  obligations = 
    at t pay 200000 per year provided(n < t and alive) 



Actulus domain-specific languages 
•  Actulus modeling language (AML) 
•  AML Product, to describe pension products 

and life insurance products 
– A contract (p,dp) is a product p and product-

specific data dp, eg policy holder's age etc 
•  AML Computation, to describe computations  

– on individual contracts, and  
– on portfolios (collections of contracts) 
– under assumptions about interest rate 

developments, mortality rates, and more 
–  should permit a range of different risk models 

•  AML Admin, to describe payments, reporting 
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Why a domain-specific language? 

•  Advantages 
– Can assign different semantics to same "text" 
– Eg product as basis for cashflow management and 

calculating reserves and solvency and ... 
– Declarative, easier to understand and process, 

than imperative/object-oriented code 
– Version control and traceability 
– Supports evolution of core system independently 

of company-specific adaptations (long-term) 
– Reduces technology dependence (long-term) 

•  Disadvantages 
– Must design, implement, maintain the language 

•  Yet, a powerful tool and business model 
– Witness Axapta, Navision, Maconomy, .. 
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AML language design 
•  Possible features of Actulus Modeling Language 

–  compositional – simple products, composite products 
–  declarative – say what holds, not how it is achieved 
–  strongly typed, to catch errors early 
–  dimension types, to prevent confusion of time, rates, 

probabilities, money and other numeric quantities 
–  dependent types, to prevent confusion of lives 
–  linear types, to prevent duplication of payments 
 

•  Related work, inspiration 
–  Peyton-Jones, Eber, Seward 2003: Financial contracts 
–  Mogensen 2003: Linear types for cashflow reeng. 
–  van Deursen et al 1995: Risla 
–  Gaillourdet 2011: a language approach to derivatives 
–  ... 
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AML-P language design story 
•  Whitepapers, actuarial theory and notation, ... 

– Quite foreign to computer science people 
– Lots of interaction, help from Mogens and Edlund 
– Project wiki essential for notation and development 

•  David Christiansen proposed AML-P designs 
– Lots of feedback 

•  Edlund people have developed it further 
– Checked G82 coverage 
– Proposed revised syntax 
– Partially implemented 
– Type is system being developed by David 
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Efficient computation 
•  AML-P admits complex contracts and state 

models with cycles 
•  So the Thiele differential equations for the 

reserve do not have closed form solutions 
•  Hence necessary to solve them numerically 

•  Some differential equation solvers 
– Runge Kutta 4th order (RK4) 
– Runge Kutta Fehlberg 4th/5th order (RKF45) 

•  Use graphics processors, GPU/Nvidia CUDA? 
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Thiele’s differential equations 
•  Solve this system of differential equations: 

 
•  Think Vj(t) = funds held for insured in state j 
•  Accrue interest at rate r(t) 
•  Pay out benefits to insured at rate bj(t)  
•  Insured transits j -> k with intensity µjk(t) 

– And if so we pay out benefits bjk(t) to insured 
– And the state j funds decrease by the difference 

between the to-state and the from-state funds 
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Solving Thiele’s equations 

•  Eg prospective reserve is Va(0) 
•  Solution approach: 

– Set Vi(120) = 0, everybody is dead at 120 
– Solve backwards from t=120 to 30, for instance 
– Obtain graph of reserve over time 
– But: there are discontinuities in r(t) and bj(t) 

• Due to Financial Authority ZCB-based interest rates  
• Due to age-dependent benefits etc 
• Worse, lump sum payments in bj(t) via Dirac function 

20 



Numerical solution of Thiele’s 
differential equations 

•  Simple Runge-Kutta 4 solver 
– Fixed time-steps, 4th order convergence 
– Easy to implement 
– Easy to handle discontinuities (“when t=65 ...”) 
– Little thread divergence on GPGPU 
– One can pre-interpolate interest rate curves 

•  Experiments with adaptive-step solvers 
– Eg. Runge-Kutta-Fehlberg 4/5, Dormand-Prince 
–  In many applications they are much faster 

•  But here discontinuities slow them down 

– Likely to have thread divergence on GPGPU 
•  Conclusion so far: Use Runge-Kutta 4 solver 
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Runge-Kutta 4 code excerpt (C#) 
•  Very simple core solver 
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for (int y=a; y>b; y--) {        
  double[] v = result[y-b]; 
  v = daxpy(1.0, v, bj_ii(y)); 
  double t = y; 
  for (int s=0; s<steps; s++) {     // Integrate from y to y-1 
    double[] k1 = dax(h, dV(t, v)); 
    double[] k2 = dax(h, dV(t + h/2, daxpy(0.5, k1, v))); 
    double[] k3 = dax(h, dV(t + h/2, daxpy(0.5, k2, v))); 
    double[] k4 = dax(h, dV(t + h,   daxpy(1.0, k3, v))); 
    v = daxpy(1/6.0, k1, daxpy(2/6.0, k2,  
                         daxpy(2/6.0, k3, daxpy(1/6.0, k4, v)))); 
    t += h; 
  } 
  Array.Copy(v, result[y-1-b], v.Length); 
} 



Why GPGPU,  
General purpose graphics processor? 
•  A modern CPU, eg Intel Core i7, has 

– A few complex cores at 2-3 GHz, each superscalar 
– Deep instruction pipeline, out-of-order execution ... 
– Good for unpredictable mixed compute loads 
– Much "management", little "compute work" 

•  A GPGPU, eg Nvidia, by contrast, has 
– Many (50-1500) simple compute cores, at <1 GHz 
– No pipelines, no out-of-order execution, etc 
– User-managed memory hierarchy 
– Good for predictable data parallel compute loads 
– Little "management", much "compute work" 
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Challenges in using GPU 
•  Multiple kinds of memory 

– On host (CPU): 
•  RAM, inaccessible to GPU  

– On device (GPU): 
• Global memory, shared by all blocks (large, slow) 
•  Constant memory, shared by all blocks, readonly 
•  Shared memory, shared by threads in block 
•  Registers, local to thread (small, fast) 

– Bottleneck is data transport, not computation 
•  Thread divergence 

– Operations must proceed in lock-step (as in RK4) 
–  If not, many cores may be idle (adaptive solvers) 
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Dahl & Harrington Scala-based 
computation framework 
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Collective life insurance products 
•  Eg spouse pension, GF810: 

“If insured dies before 65 years, pay 100k 
DKK/year to spouse, if any, while alive” 
= Give spouse a life annuity at insd’s death 

•  Spouse at time of death is assumed unknown 
when contract is made 

•  Reserve computation needs three integrations 
– Over insured’s death intensity 
– Over marriage probability and spouse’s age 
– Over spouse’s death intensity 

•  Very compute intensive, 30 CPU sec/contract 
•  Unsuited for GPGPU (adaptive, subroutines) 
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GF810 by triple integration 
•  Outer: insured’s life 

 

•  Middle: spouse age distribution 

 
•  Inner: spouse’s life, where 

is the solution to 
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The technology used 
•  ODE generation and model expansion in F# 
•  Solver kernels written in F#  

– Using Alea GPU from www.quantalea.com 
•  Pros 

– Excellent performance 
– Much less hassle than CUDA C code 
– Functional-style F# to generate the kernels 

•  Cons 
–  Imperative-style F# for the generated kernels 
– Must still ponder memory use and access patterns 
–  (And MS Azure cloud has no GPU instances) 
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Lots of additional aspects 1 
•  “Seven state model” 

– Surrender: “I move to NZ, give me my money” 
– Free policy: “I’m jobless and cannot pay right now 

but would like to keep my pension savings” 
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Lots of additional aspects 2 
•  Technical reserve vs market reserve 
•  Cashflows: Temporal distribution of insurer’s 

payments (expected investment horizon etc) 
– Compute by forward solution of Thiele-like ODEs 
– NB: reserve = integral of discounted cashflows 

•  Financial Authorities interest rate curve 
•  Benchmark mortalities and  
•  Policy holder behavior (surrender, retirement) 
•  Stochastic simulation of shocks 

–  Interest rate goes up or down 
– Mortalities go up or down 
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Current state, and plans 
•  Product sold: Actulus Portfolio Calculator APC 

–  Has been developed, is being marketed and bought 
–  Written in C#, runs in MS Azure cloud 
–  Does not use AML or GPUs 
–  Many CPU hours for a portfolio reserve (eg 100k policies) 

•  Plans on the 1-year horizon 
–  Continue and finalize design of AML Product DSL 
–  Use AML Product in APC 
–  Generate ODEs and solvers from AML Product files 
–  Use GPU computations for APC 

•  Longer term 
–  Design AML Admin 
–  Stochastic retirement, simulations, shocks, ... 
–  Customer advice, utility maximization, ... 
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David Christiansen’s PhD project 
•  Initial AML design 
•  Embedded domain-specific languages in Idris 

– dependently typed programming 
– main Idris architect is Edwin Brady, St Andrews 

•  Type providers (à la F#) in Idris 
•  Error reflection – clearer DSL error messages 
•  Quasiquotations in Idris 
•  Generating Idris declarations from DSL terms 

– Also supports type providers in a new way 
•  Now applying this to AML type system design 
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Ad: PhD project Declarative parallel 
programming on multicore machines 
•  Design, prototype and evaluate well-

performing parallel implementations of high-
level declarative programming languages.  

•  These languages may be based on dataflow 
concepts (including extensions of 
spreadsheet-style computations), array 
programming, or other declarative concepts.  

•  The implementations will primarily target 
shared-memory multicore machines, through 
high-level with garbage collection. 
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