
1

Domain-specific languages
and GPGPUs

in life insurance and pensions

Peter Sestoft
(presenting work by many people in the Actulus

project, at Edlund, U Copenhagen, and ITU)

Parallel Functional Programming lecture 7
at Chalmers University of Technology

2015-04-24

The speaker
•  MSc 1988 computer science and mathematics and

PhD 1991, DIKU, Copenhagen University
•  KU, DTU, KVL and ITU; and Glasgow U, AT&T Bell

Labs, Microsoft Research UK, Harvard University
•  Programming languages, software development, ...
•  Open source software

–  Moscow ML implementation, 1994…
–  C5 Generic Collection Library, with Niels Kokholm, 2006…
–  Funcalc spreadsheet implementation, 2014

1993 2002, 2005, 2016 2004 & 2012 2007 2012 2014

Example life and pension products
•  Pay 1m DKK on insured’s death, if before 65

(term life insurance, GF115)
•  Pay 1m DKK on the day insured turns 65, if alive

(pure endowment, GF125)
•  Pay 200k DKK/year from age 65 while insured is

alive (life annuity, GF211)
•  Pay 200k DKK/year while insured is disabled,

alive, and not yet 65 (disability insurance, GF415)
•  If insured dies before 65 years, pay 100k DKK/

year to spouse, if any, while alive (spouse
pension, GF810)

•  NB: Conditioned on insured’s life, unlike private
savings (that pass to the estate)

3

Formalizing pension contracts
•  Life-based state models

•  States
•  Transition intensities, eg mortality rate µad(t)
•  Payment in state ba(t) eg. “while t>65 ...”
•  Payment on transitions bad(t): “upon death ...”

4

Alive

Disabled

Dead

!!

µad(t)

µid(t)

µai(t)

µda(t)

ba(t)
bd(t)=0

bi(t)

bad(t)

bid(t) bai(t)

Some basic concepts
•  Prospective reserve

–  the net present value of expected future payments
•  Discount rate

–  1 DDK today is worth r = 1.02 DDK a year from now
•  Mortality

–  Insured people die with a certain intensity (probability)

•  Possible shocks, simulation scenarios:
–  Interest rate: assume adverse (lower) discount rates,

that is, less future interest earned on current funds
–  Mortality rate: assume adverse mortality rates, eg. a

cure for cancer (lower mortality), or a natural
catastrophe or epidemic (higher mortality)

5

Reserve graph for Term Insurance
Pay 1 krona to insured if dies before 65

6

The Actulus project, partners
•  Edlund A/S

–  software for the Danish pensions and life insurance
industry (PFA, ATP, Nordea, Skandia, ...)

–  200 people, math, CS, actuaries, many PhDs
•  Department of Mathematical Sciences at

Copenhagen University
–  actuarial mathematics and numerical algorithms

•  IT University of Copenhagen
–  programming language technology, domain-specific

languages, parallel programming
–  David Christiansen, Peter Sestoft, BSc and MSc students

•  Funding: Advanced Technology Foundation
•  Project duration: April 2011 to March 2016

7

8

Goals of the Actulus project
•  Overall: Establish a platform for definition of

advanced life insurance and pension products
and for efficient computations on them.

•  But why?
•  Huge societal importance in Denmark

– Pension provisions 1,756bn DKK = 97% of GDP
– Net increase is 50bn DKK per year (2013)

•  Very long-term: Most contracts entered today
(25 yr woman) will still be in force in 2070

9

And why now?
•  Regulation: EU Solvency 2

– Single market for insurance in Europe (2016)
– Stronger requirements on risk evaluation

•  Probability of 1-year insolvency: P(A - R < 0) < 0.5%

– Stronger transparency requirements
•  To Edlund, a challenge and an opportunity

– Can they go beyond the domestic market?
•  Technological opportunities

– GPGPUs allow fast numerical solution of risk models
•  Traditional closed-form formulas no longer suffice

– Domain-specific languages for products and risk
– Code generation from those languages

10

Why in Denmark?
•  On sustainability of pension provisions:

•  DK: Wide coverage, strong regulation, strong

formalization, collaboration and competition
11

”We are the country that’s best
prepared. In general, Sweden, Finland
and the Netherlands are quite well
prepared, but we are even further
ahead. [...] in today’s Europe you will
not find a better situation."

Allan Polack, chair of working group
on future pension systems in
Europe, quoted in Nordea Private
Banking magazine, March 2013

Actulus Modeling Language,
A domain-specific language

•  What?
– Notation specially designed for the application area
– Supported by tools: editors, checkers, compilers ...

•  A state model: insured is alive or dead

•  A contract: Pay 200000/year from year n
while insured is alive

12

statemodel LifeDeath where
 states = alive
 | dead
 transitions = alive -> dead

contract GF211(n : TimePoint) : LifeDeath where
 obligations =
 at t pay 200000 per year provided(n < t and alive)

Actulus domain-specific languages
•  Actulus modeling language (AML)
•  AML Product, to describe pension products

and life insurance products
– A contract (p,dp) is a product p and product-

specific data dp, eg policy holder's age etc
•  AML Computation, to describe computations

– on individual contracts, and
– on portfolios (collections of contracts)
– under assumptions about interest rate

developments, mortality rates, and more
–  should permit a range of different risk models

•  AML Admin, to describe payments, reporting
13

Why a domain-specific language?

•  Advantages
– Can assign different semantics to same "text"
– Eg product as basis for cashflow management and

calculating reserves and solvency and ...
– Declarative, easier to understand and process,

than imperative/object-oriented code
– Version control and traceability
– Supports evolution of core system independently

of company-specific adaptations (long-term)
– Reduces technology dependence (long-term)

•  Disadvantages
– Must design, implement, maintain the language

•  Yet, a powerful tool and business model
– Witness Axapta, Navision, Maconomy, ..

14

Tax Authorities

Internal risk
management

An AML-P contract has many uses

Contract
Contract

Contract

Risk model
Risk model

Financial
Authorities

Employer and
employee = insured

Insured

Other
reports

Pension
agreement Running

administration

AML language design
•  Possible features of Actulus Modeling Language

–  compositional – simple products, composite products
–  declarative – say what holds, not how it is achieved
–  strongly typed, to catch errors early
–  dimension types, to prevent confusion of time, rates,

probabilities, money and other numeric quantities
–  dependent types, to prevent confusion of lives
–  linear types, to prevent duplication of payments

•  Related work, inspiration
–  Peyton-Jones, Eber, Seward 2003: Financial contracts
–  Mogensen 2003: Linear types for cashflow reeng.
–  van Deursen et al 1995: Risla
–  Gaillourdet 2011: a language approach to derivatives
–  ...

16

AML-P language design story
•  Whitepapers, actuarial theory and notation, ...

– Quite foreign to computer science people
– Lots of interaction, help from Mogens and Edlund
– Project wiki essential for notation and development

•  David Christiansen proposed AML-P designs
– Lots of feedback

•  Edlund people have developed it further
– Checked G82 coverage
– Proposed revised syntax
– Partially implemented
– Type is system being developed by David

17

Efficient computation
•  AML-P admits complex contracts and state

models with cycles
•  So the Thiele differential equations for the

reserve do not have closed form solutions
•  Hence necessary to solve them numerically

•  Some differential equation solvers
– Runge Kutta 4th order (RK4)
– Runge Kutta Fehlberg 4th/5th order (RKF45)

•  Use graphics processors, GPU/Nvidia CUDA?

18

Thiele’s differential equations
•  Solve this system of differential equations:

•  Think Vj(t) = funds held for insured in state j
•  Accrue interest at rate r(t)
•  Pay out benefits to insured at rate bj(t)
•  Insured transits j -> k with intensity µjk(t)

– And if so we pay out benefits bjk(t) to insured
– And the state j funds decrease by the difference

between the to-state and the from-state funds

19

Solving Thiele’s equations

•  Eg prospective reserve is Va(0)
•  Solution approach:

– Set Vi(120) = 0, everybody is dead at 120
– Solve backwards from t=120 to 30, for instance
– Obtain graph of reserve over time
– But: there are discontinuities in r(t) and bj(t)

• Due to Financial Authority ZCB-based interest rates
• Due to age-dependent benefits etc
• Worse, lump sum payments in bj(t) via Dirac function

20

Numerical solution of Thiele’s
differential equations

•  Simple Runge-Kutta 4 solver
– Fixed time-steps, 4th order convergence
– Easy to implement
– Easy to handle discontinuities (“when t=65 ...”)
– Little thread divergence on GPGPU
– One can pre-interpolate interest rate curves

•  Experiments with adaptive-step solvers
– Eg. Runge-Kutta-Fehlberg 4/5, Dormand-Prince
–  In many applications they are much faster

•  But here discontinuities slow them down

– Likely to have thread divergence on GPGPU
•  Conclusion so far: Use Runge-Kutta 4 solver

21

Runge-Kutta 4 code excerpt (C#)
•  Very simple core solver

22

for (int y=a; y>b; y--) {
 double[] v = result[y-b];
 v = daxpy(1.0, v, bj_ii(y));
 double t = y;
 for (int s=0; s<steps; s++) { // Integrate from y to y-1
 double[] k1 = dax(h, dV(t, v));
 double[] k2 = dax(h, dV(t + h/2, daxpy(0.5, k1, v)));
 double[] k3 = dax(h, dV(t + h/2, daxpy(0.5, k2, v)));
 double[] k4 = dax(h, dV(t + h, daxpy(1.0, k3, v)));
 v = daxpy(1/6.0, k1, daxpy(2/6.0, k2,
 daxpy(2/6.0, k3, daxpy(1/6.0, k4, v))));
 t += h;
 }
 Array.Copy(v, result[y-1-b], v.Length);
}

Why GPGPU,
General purpose graphics processor?
•  A modern CPU, eg Intel Core i7, has

– A few complex cores at 2-3 GHz, each superscalar
– Deep instruction pipeline, out-of-order execution ...
– Good for unpredictable mixed compute loads
– Much "management", little "compute work"

•  A GPGPU, eg Nvidia, by contrast, has
– Many (50-1500) simple compute cores, at <1 GHz
– No pipelines, no out-of-order execution, etc
– User-managed memory hierarchy
– Good for predictable data parallel compute loads
– Little "management", much "compute work"

23

24

16/14 S
M

 x 32 cores =
 512/448 cores

Challenges in using GPU
•  Multiple kinds of memory

– On host (CPU):
•  RAM, inaccessible to GPU

– On device (GPU):
• Global memory, shared by all blocks (large, slow)
•  Constant memory, shared by all blocks, readonly
•  Shared memory, shared by threads in block
•  Registers, local to thread (small, fast)

– Bottleneck is data transport, not computation
•  Thread divergence

– Operations must proceed in lock-step (as in RK4)
–  If not, many cores may be idle (adaptive solvers)

25

Dahl & Harrington Scala-based
computation framework

26

AML-P

ODE AST

Calcspec

CUDA C,
GPU

C AST Interpreter

C#, cloud,
C, multicore

RK4, RKF45

RK4 RK4, RKF45

Delite Akka

optimize

Collective life insurance products
•  Eg spouse pension, GF810:

“If insured dies before 65 years, pay 100k
DKK/year to spouse, if any, while alive”
= Give spouse a life annuity at insd’s death

•  Spouse at time of death is assumed unknown
when contract is made

•  Reserve computation needs three integrations
– Over insured’s death intensity
– Over marriage probability and spouse’s age
– Over spouse’s death intensity

•  Very compute intensive, 30 CPU sec/contract
•  Unsuited for GPGPU (adaptive, subroutines)

27

GF810 by triple integration
•  Outer: insured’s life

•  Middle: spouse age distribution

•  Inner: spouse’s life, where

is the solution to

28

The technology used
•  ODE generation and model expansion in F#
•  Solver kernels written in F#

– Using Alea GPU from www.quantalea.com
•  Pros

– Excellent performance
– Much less hassle than CUDA C code
– Functional-style F# to generate the kernels

•  Cons
–  Imperative-style F# for the generated kernels
– Must still ponder memory use and access patterns
–  (And MS Azure cloud has no GPU instances)

30

Lots of additional aspects 1
•  “Seven state model”

– Surrender: “I move to NZ, give me my money”
– Free policy: “I’m jobless and cannot pay right now

but would like to keep my pension savings”

31

Lots of additional aspects 2
•  Technical reserve vs market reserve
•  Cashflows: Temporal distribution of insurer’s

payments (expected investment horizon etc)
– Compute by forward solution of Thiele-like ODEs
– NB: reserve = integral of discounted cashflows

•  Financial Authorities interest rate curve
•  Benchmark mortalities and
•  Policy holder behavior (surrender, retirement)
•  Stochastic simulation of shocks

–  Interest rate goes up or down
– Mortalities go up or down

32

Current state, and plans
•  Product sold: Actulus Portfolio Calculator APC

–  Has been developed, is being marketed and bought
–  Written in C#, runs in MS Azure cloud
–  Does not use AML or GPUs
–  Many CPU hours for a portfolio reserve (eg 100k policies)

•  Plans on the 1-year horizon
–  Continue and finalize design of AML Product DSL
–  Use AML Product in APC
–  Generate ODEs and solvers from AML Product files
–  Use GPU computations for APC

•  Longer term
–  Design AML Admin
–  Stochastic retirement, simulations, shocks, ...
–  Customer advice, utility maximization, ...

33

David Christiansen’s PhD project
•  Initial AML design
•  Embedded domain-specific languages in Idris

– dependently typed programming
– main Idris architect is Edwin Brady, St Andrews

•  Type providers (à la F#) in Idris
•  Error reflection – clearer DSL error messages
•  Quasiquotations in Idris
•  Generating Idris declarations from DSL terms

– Also supports type providers in a new way
•  Now applying this to AML type system design

34

References
•  Christiansen, Grue, Niss, Sestoft, Sigtryggsson: An

actuarial programming language for life insurance
and pensions, Intl. Congress Actuaries 2014,
http://www.itu.dk/people/sestoft/papers/amlp.pdf

•  Harrington, Dahl, Sestoft, Christiansen: Pension
reserve computations on GPUs, FHPC 2014
http://dl.acm.org/citation.cfm?id=2636230&dl=ACM

•  The Actulus project
–  www.actulus.dk

•  Edlund A/S
–  www.edlund.dk

•  Mogens Steffensen
–  www.math.ku.dk/~mogens/

•  Peter Sestoft
–  www.itu.dk/people/sestoft

38

39

Ad: PhD project Declarative parallel
programming on multicore machines
•  Design, prototype and evaluate well-

performing parallel implementations of high-
level declarative programming languages.

•  These languages may be based on dataflow
concepts (including extensions of
spreadsheet-style computations), array
programming, or other declarative concepts.

•  The implementations will primarily target
shared-memory multicore machines, through
high-level with garbage collection.

40

