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Abstract

It is di�cult to achieve elegance� e�ciency and parallelism simultaneously in
functional programs that manipulate large data structures� We demonstrate this
through careful analysis of program examples using three common functional
data�structuring approaches� lists using Cons and arrays using Update �both
�ne�grained operators�� and arrays using make array �a �bulk	 operator�� We
then present I�structures as an alternative� and show elegant� e�cient and parallel
solutions for the program examples in Id� a language with I�structures� The
parallelism in Id is made precise by means of an operational semantics for Id
as a parallel reduction system� I�structures make the language nonfunctional�
but do not lose determinacy� Finally� we show that even in the context of purely
functional languages� I�structures are invaluable for implementing functional data
abstractions�
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� Introduction

There is widespread agreement that only parallelism can bring about signi�cant improve�
ments in computing speed �several orders of magnitude faster than today�s supercomputers��
Functional languages have received much attention as appropriate vehicles for programming
parallel machines� for several reasons� They are high�level� declarative languages� insulating
the programmer from architectural details� Their operational semantics in terms of rewrite
rules o�ers plenty of exploitable parallelism� freeing the programmer from having to iden�
tify parallelism explicitly� They are determinate� freeing the programmer from details of
scheduling and synchronization of parallel activities�

In this paper� we focus on the issue of data structures� We �rst demonstrate some di�culties
in the treatment of data structures in functional languages� and then propose an alternative�
called �I�structures	� Our method will be to take some test applications� and compare their
solutions using functional data structures� and using I�structures� We study the solutions
from the point of view of

� e�ciency �amount of unnecessary copying� speed of access� number of reads and writes�
overheads in construction� etc���

� parallelism �amount of unnecessary sequentialization�� and
� ease of coding�

We hope to show that it is very di�cult to achieve all three objectives using functional data
structures�

Since our ideas about I�structures evolved in the context of scienti�c computing� most of
the discussion will be couched in terms of arrays�� All our program examples are written
in Id� which is a functional language augmented with I�structures� It is the language we
use in our research on parallel architectures� Of course� the e�ciency and parallelism of a
program also depend on the underlying implementation model� Our �ndings are based on
our own extensive experience with data
ow architectures� in particular the MIT Tagged�
Token Data
ow Architecture� the centerpiece of our research ��� ���� We have also carefully
studied other published implementations of functional languages� However� it is beyond the
scope of this paper to delve into such levels of implementation detail� and so we conduct
our analyses at a level which does not require any knowledge of data
ow on the part of the
reader� In Section �� we present an abbreviated version of the rewrite�rule semantics of Id�
which captures precisely the parallelism of the data
ow machine� we leave it to the intuition
of the reader to follow the purely functional examples prior to that section�

While the addition of I�structures takes us beyond functional languages� Id does not lose
any of the properties that make functional languages attractive for parallel machines� In
particular� Id remains a higher�order� determinate language� i�e�� its rewrite�rule semantics
remains con
uent� In the �nal section of the paper� we discuss the implications of such
an extension to a functional language� We also show that I�structures are not enough�
there are some applications that are not solved e�ciently whether we use functional data
structures or I�structures� This class of applications is a subject of current research�

�However
 it would be erroneous to infer that our conclusions are relevant only to programs with arrays�
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� The Test Problems

In this section we describe four small example applications which we use to study functional
data structures and I�structures�

��� Example A

Build a matrix with

A�i� j� � i � j

Note that the computation for each element is independent of all the others�

��� Example B �Wavefront�

Build a matrix with�

A�
� j� � 


A�i� 
� � 


A�i� j� � A�i� 
� j� � A�i� 
� j � 
� � A�i� j � 
�

The left and top edges of the matrix are all 
� The computation of each remaining element
depends on its neighbors to the left and above� In a parallel implementation one can thus
imagine the computation proceeding as a �wavefront	 from the top and left edges to the
bottom�right corner of the matrix�
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��� Example C �Inverse Permutation�

This problem was posed to one of us �Arvind� by Henk Barendregt� and is illustrates the
di�culties of dealing with computed indices� Given a vector B of size n containing a per�
mutation of integers 
��n� build a new vector A of size n such that�

A�B�i�� � i

The computation for each of A�s components is independent of the others� �This is called
an inverse permutation because the result A also contains a permutation of 
��n� and when
the operation is repeated with A as argument� the original permutation is returned��

��� Example D �Shared Computation�

Build two arrays A and B of size n such that

A�i� � f �h i�

B�i� � g �h i�

such that the h part of the computation for every i�th element of the two arrays is shared��

This example illustrates shared computation across arrays� Sharing could also occur across
indices in a single array� for example� the computations for A��i� and A��i � 
� may have
a common subcomputation� And of course� in other applications the two types of sharing
may be combined�

�Here we use juxtaposition to indicate function application� notation that is common in functional
languages� Application associates to the left
 so that �f x y� stands for ��f x� y��
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� Fine�Grained Functional Data Structure Operations

We begin by looking at two data�structuring operations traditionally found in functional
languages� In Section ��
� we look at �Cons	� a pairing operation� and in Section ���� we look
at �Update	� an operation that speci�es a single� incremental change in an array� We call
them ��ne�grained	 operations because more useful operations such as a vector sum� matrix
multiplication� etc�� must be programmed in terms of a number of uses of these primitives�

��� Cons� Simulating Large Data Structures Using Lists

Functional languages have traditionally had a two�place �Cons	 constructor as a basic data�
structuring mechanism� Given Cons� one can of course write suitable array abstractions as
a �rst step towards solving our examples� In this section we quickly reject this as a serious
solution�

A typical representation for arrays using Cons would be to maintain an array as a list of
elements� a matrix as a list of arrays� and so on� An abstraction for general access to an
array component may be de�ned as follows�

Def select A i � If �i �� �� Then hd A

Else select �tl A� �i��� �

Because of the list traversal� selection takes O�n� reads� where n is the length of the array�

Now consider a vector sum� programmed in terms of select�

Def vector�sum A B i � If �i � n� Then nil

Else cons ��select A i� 	 �select B i��

vector�sum A B �i	�� �

This function performs O�n�� reads� where a corresponding FORTRAN program would per�
form only O�n� reads�

This problem can be mitigated at the expense of ignoring the select abstraction and taking
advantage of the underlying list representation so that the list�traversing overhead is not
cumulative�

Def vector�sum�
 A B � If �null A� Then nil

Else cons ��hd A� 	 �hd B��

vector�sum�
 �tl A� �tl B� �

This solution performsO�n� reads �though it is still ine�cient because it is not tail�recursive��

Unfortunately� every new abstraction must be carefully recoded like this because combina�
tions of given abstractions are not e�cient� For example�

vector�sum�
 A �vector�sum�
 B C�

creates and traverses an intermediate list unnecessarily�

Coding new abstractions e�ciently is di�cult because the list representation dictates a pre�
ferred order in which arrays should be constructed and traversed� an order that is extremely
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di�cult to circumvent� Consider one of the most basic array operations� multiplication of
two matrices A and B as described in a mathematics textbook�

C�i� j� � A�i� �� �B��� j�

where � is the �inner�product	� But this requires a traversal of B by column� which is
very ine�cient in our list representation� One may propose �rst to transpose B� but even a
transpose is not easy to code e�ciently �we invite the reader to attempt it��� and even if it
were� we still pay the overhead of making an intermediate copy of the matrix�

Finally� the use of a ��ne�grained	 data�structuring primitive such as Cons places an enormous
burden on the storage allocator because of the large number and frequency of requests� Note
also that in many typical implementations where a Cons cell occupies twice the storage of a
number �for two pointers�� the storage requirements for the list representation of a vector of
numbers can be more than twice the storage for the numbers alone�

For the rest of the paper� we will assume primitives that allocate contiguous storage for each
array� so that there is not much storage overhead� and so that array accesses take constant
time�

��� Update� A Functional Array Operator

Instead of simulating arrays using lists� one could provide array operators directly� We now
describe one such set of operators�

An array is allocated initially using the expression

array �m�n�

which returns an array whose index bounds are �m�n�� and all of whose locations contain
some standard initial value �call it �nil	���

The expression

update A i v

returns an array that is identical to �A	 except at index �i	� where it contains the value
�v	� Despite its imperative�sounding name� this is a functional operation� it returns a new
array and does not disturb A�

A component of an array is selected using the expression

A�i


which returns the value at index �i	 from array �A	�

For multi�dimensional arrays� we could nest 
�dimensional arrays� or we could introduce new
primitives such as

�In Id
 the comma is an in�x tupling operation
 so that the expression �e������en� denotes a n�tuple
whose components are the values of e�
 ���
 en respectively�
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matrix ��mi�ni���mj�nj��

update A �i�j� v

A�i�j


These operations leave a lot of room for choosing the internal representation of arrays� In
order to achieve constant time access� at the expense of O�n� allocation and update� we will
only look at representations that allocate arrays as contiguous chunks of memory� Other
researchers have looked at implementations based on trees� where selection and update are
both O�log n�� and where it is possible to have extensible arrays� Ackerman �
� studied
implementations based on binary trees� and Thomas �
�� studied implementations based on
��� trees�

But none of these implementations are adequate in of themselves� they all involve far
too much unnecessary copying and unnecessary sequentialization� as we will demonstrate
in the next section� Thus� they are always considered along with some major compile�time
and�or run�time optimizations to recoup e�ciency and parallelism� and these are discussed
in subsequent sections�

����� Copying and Sequentialization of Update

A direct implementation of the �update A i v	 operator would be�

� allocate an array with the same index bounds as �A	�

� copy all elements from �A	 to the result array� except at location �i	�

� store value �v	 in location �i	 of the result array�

� return the pointer to the result array�

The array selection operation would simply read a memory location at an appropriate o�set
from the pointer to the array argument�

Example A will su�ce to demonstrate that such a direct implementation is grossly ine�cient�
Here is a solution that allocates an array� and then uses �tail�� recursion to traverse and �ll
it with the appropriate contents�

A � � A � matrix ����m�����n��

In

traverse A � � � �

Def traverse A i j �

� next�A � update A �i�j� �i	j� �

In

If �j � n� Then traverse next�A i �j	��

Else If �i � m� Then traverse next�A �i	�� �

Else next�A � �

We use the syntax
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� BINDING ��� BINDING In EXPRESSION �

for blocks� which are like �letrec	 blocks in other functional languages� and follow the usual
static scoping rules�

We prefer to use the following loop syntax to express the tail�recursions�

� A � matrix ����m�����n��

In

�For i �� � To m Do

Next A � �For j �� � To n Do

Next A � update A �i�j� �i	j�

Finally A�

Finally A�

In the �rst iteration of the inner loop body� the �A	 on the right�hand side refers to its
value in the surrounding scope �in this case� the matrix of �nil	s allocated at the top of the
block�� In each iteration of the loop� the phrase �Next A	 binds the value of A for the next
iteration� The phrase �Finally A	 speci�es the ultimate value to be returned at the end of
the iteration�

There are two major di�culties in such a program� The �rst is its pro
igate use of storage�
It is clear that� using a direct implementation of update� we would create �mn � 
� arrays�
of which only one� the �nal one� is of interest� Each intermediate array carries only
incrementally more information than the previous intermediate array�

The second criticism of this program is that it over�speci�es the order of the updates� In the
problem speci�cation� each element can be computed independently of the others� However�
because of the nature of the update primitive� it is necessary for us to chain all the updates
involved in producing the �nal value into a linear sequence�

The necessity to sequentialize the updates also a�ects program clarity adversely� it is
an extra �and unnecessary� bit of detail to be considered by the programmer and reader�
Consider a solution for the wavefront problem �Example B��

� A � matrix ����m�����n��

In

�For i �� � To m Do

Next A � �For j �� � To n Do

v � If �i �� �� or �j �� �� Then �

Else A�i��� j 


	 A�i���j��


	 A� i �j��
 � �

Next A � update A �i�j� v

Finally A�

Finally A�

It takes some careful thought to convince oneself that the above program is correct� that
the array selections in computing �v	 actually read previously computed values and not
�nil	� the original contents of A� For example� if the recurrence had been speci�ed instead
as Ai���j �Ai���j���Ai�j�� �with appropriate boundary conditions�� the programmer would
have to realize that the j iteration would have to be reversed to count down from n to �� This
is a great departure from the �declarative	 nature of the original recurrence speci�cation�
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����� Using Reference Counts to Reduce Storage Requirements

Several researchers have recognized that we can use reference counts to improve the e�ciency
of the update operation� The idea is very simple� assume that associated with each data
structure is a number� called its �reference count	 �RC�� which counts the number of pointers
to it that are currently outstanding� The RC of a structure is incremented every time a copy
of its pointer is made and decremented every time its pointer is discarded� If the RC of the
argument array is 
 when the update operation executes� there can be no other references
to the array� The update operation can thus safely be performed in situ� by destructively
writing the value into the existing array and returning a pointer to the existing array� This
is of course much cheaper than allocating and �lling a new array� This solution has been
studied carefully in �
�� Unfortunately� except where the program is written with an arti�cial
sequentialization of array accesses and updates� opportunities for this optimization occur but
rarely in a parallel machine�

We must also consider that every update operation now pays the overhead of checking the RC�
Further� the space and time behavior of the program becomes very unpredictable� because
whether or not the RC is 
 depends on the particular schedule for processes chosen by the
operating system� This can depend� for example� on the current load and con�guration of
the machine��

In �
��� Hudak has proposed a technique called �abstract reference counting	� in which a
program is analyzed statically to predict the reference counts of arrays at various program
points �see also �
���� When the analysis predicts that the reference count of the array
argument to an update operation will be one� the compiler generates code to perform an
update in situ�

Hudak�s analysis was performed with respect to a sequential operational semantics� and
relies on the sequential chaining of the collection of update operations� In this regard� Hudak
reports great success in his experiments� We believe that it will be possible to predict that
in our program for Example A� the reference count for each update will indeed be one� thus
exactly one array will be allocated� and all the updates will be done destructively� resulting
in a program as e�cient �and as sequential� as its FORTRAN counterpart�

Another problem is that the analysis can be sensitive to the order in which the programmer
writes his program� Consider a program to compute an array that is identical to a given
array A except that the i�th and j�th elements are exchanged�

	� � vj � A�j


�� In � vi � A�i


�� In � B � update A i vj

�� In update B j vi ���

Consider a sequential operational semantics that speci�es that the bindings of a block are
executed before the body of the block� Static analysis may then predict that lines 
 and �

�Maintaining RCs at run time also raises other issues which are beyond the scope of this paper
 such as
how much additional code�network�tra�c there is to maintain RCs� how much contention there is at the RC
�eld of an array amongst all operations on that array� how atomically to increment�decrement the RC �eld�
how to avoid races between increment and decrement operations
 etc�
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have been completed before executing line �� and so the reference count of A in line � should
be 
� Thus the update can be done in place� Similarly� the update in line � can also be
done in place� But the programmer could easily have written the program with lines � and
� exchanged�

	� � vj � A�j


�� In � B � update A i vj

�� In � vi � A�i


�� In update B j vi ���

The reference count of A in line � is no longer 
 because of the outstanding reference in line
�� and so the update in line � cannot be done in place� The update in line � can still be done
in place�

Now consider a parallel operational semantics for the language� A precise example of such
a semantics is given in Section � but� for now� imagine that the bindings of a block can be
executed in parallel with the body� with sequencing� if any� based only on data dependen�
cies� All four lines of the program are now initiated in parallel� Since there are no data
dependencies between lines � and �� their order of execution is unpredictable� Thus� static
analysis cannot draw any de�nite conclusions about the reference count of A in line ��

����� Using Subscript Analysis to Increase Parallelism

We have seen that the nature of the update primitive requires the programmer to sequen�
tialize the sequence of updates in computing an array� Reference count analysis sometimes
determines that these updates may be done in place�

If static analysis could further predict that the subscripts in the sequence of updates were
disjoint� then the updates would commute� they could then all be done in parallel� Using
such analysis on our program for Example A in Section ����
� the compiler could generate
code to perform all the mn updates in parallel�

Subscript analysis has been studied extensively� most notably by Kuck et al� at the University
of Illinois �
�� ��� and Kennedy at Rice University ���� Most of this work was done in the
context of vectorizing compilers for FORTRAN� In general� this is an intractable problem�
but in the commonly occuring case where the subscripts are of the form ai� b �a and b are
constants� i is a loop index�� subscript analysis can reveal parallelism� However� there is a
signi�cant cost to this analysis� both in terms of compilation speed and in terms of the e�ort
to develop a compiler�

Compared to FORTRAN subscript analysis� is on the one hand� easier in functional languages
due to referential transparency but� on the other hand� more di�cult because of dynamic
storage allocation�

An example of a program where subscript analysis cannot extract any useful information is
a solution to Example C� the Inverse Permutation problem�

B � � B � array ���n�

In

For i �� � To n Do
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Next B � update B A�i
 i

Finally B � �

In order to parallelize the loop� the compiler needs to know something about the contents
of A� such as that it contains a permutation of 
��n� This is in general too much to ask of
compile�time analysis� This situation is not arti�cial or unusual� it occurs all the time in
practical codes� such as in sorting algorithms that avoid copying large elements of arrays by
manipulating their indices instead� and in Monte Carlo techniques and Random Walks�

��� Discussion

We hope we have convinced the reader of the inadequacy of ��ne�grained	 functional data
structuring mechanisms such as Cons and Update� especially in a parallel environment� �Some
of these problems are solved using the �make array	 primitive discussed in the next section��

Writing programs directly in terms of these primitives does not result in very perspicuous
programs� Cons requires the programmer continuously to keep in mind the list representa�
tion� and update requires the programmer to devise a sequential chaining of more abstract
operations� In both cases� it is advisable �rst to program some higher�level abstractions and
subsequently to use those abstractions�

Both operators normally involve substantial unnecessary copying of intermediate data struc�
tures and substantial unnecessary sequentialization� It was possible to avoid these overheads
only when the compiler could be assured that a� reference counts were one� and that b� the
subscripts in a chain of updates were disjoint�� Automatic detection of these properties does
not seem tractable in general�

There is a disquieting analogy with FORTRAN here� Our functional operators force over�
speci�cation of a problem solution� and static analysis attempts to relax unnecessary con�
straints� Parallelizing FORTRAN compilers face the same problem� albeit for a di�erent
reason �side e�ects��

�Originally
 an I�structure was just a functional data structure with these two properties ���
 and not a
separate kind of object with its own operations�







� Make Array� A Bulk Functional Data Structure Op�

eration

Many researchers �notably Keller� have proposed a �bulk	 array�de�nition primitive that
treats an array as a �cache	 for a function over a rectangular subset of its domain �
�� ���
For example� the expression

make�array �m�n� f

where �m�n� is a pair ���tuple� of integers and f is a function� returns an array whose index
bounds are �m�n�� and whose i�th component contains �f i�� We will often refer to f as the
��lling function	� One can think of the array as a cache for f because for i within bounds�
A�i
 returns the same value as �f i�� but �we hope� at signi�cantly lower cost�

Higher dimensional arrays may be constructed either by nesting arrays� or by generalizing
the primitive� Thus�

make�matrix ��m i�n i���m j�n j�� f

produces a matrix where the �i�j��th component contains f �i�j�� The �rst argument to
make matrix is a pair whose components are pairs of integers� it speci�es the index bounds of
the matrix�

��� Example A

We can now readily see the solution for Example A�

Def f �i�j� � i 	 j�

A � make�matrix ����m�����n�� f

which is concise and elegant and does not pose any serious problem for an e�cient� parallel
implementation�

��� Strictness of make array

Before moving on to the remaining examples� it is worth noting that make array need not be
strict� i�e�� the array may be �returned	 before any of the component values have been �lled
in�

An eager implementation �such as a data
ow implementation� may behave as follows� the
bounds expression is evaluated �rst and storage of the appropriate size allocated� A pointer
to the array can now be returned immediately as the result of the make array expression�
Meanwhile� n independent processes are initiated� computing �f ��� ���� �f n� respectively�
each process� on completion� writes into the appropriate location in the array� Some syn�
chronization mechanism is necessary at each array location so that a consumer that tries
to read some A�i
 while it is still empty is made to wait until the corresponding �f i� has
completed� One way to achieve this synchronization is to use I�structure storage� where each
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location has �presence bits	 to indicate whether the value is present or absent� I�structure
storage is discussed in more detail in Section ��

Another way to achieve this synchronization is by lazy evaluation� the bounds expression
is evaluated �rst and storage of the appropriate size is allocated� Each location A�i
 is
then loaded with the suspension for �f i� and the pointer to the array is then returned�
A subsequent attempt to read A�i
 will force evaluation of the suspension� which is then
overwritten by the value� In general� a fundamental activity of lazy evaluators� testing an
expression to check if it is still a suspension� is really a synchronization test and also needs
presence bits� although they are not usually referred to with that terminology�

This kind of nonstrictness permits a �pipelined	 parallelism in that the consumer of an array
can begin work on parts of the array while the producer of the array is still working on other
parts� Of course� even the Cons and Update operators of Section � could bene�t from this
type of nonstrictness�

��� Example B �Wavefront�

A straightforward solution to the wavefront problem is�

Def f �i�j� � If �i �� �� or �j �� �� Then �

Else f �i��� j �

	 f �i��� j���

	 f � i � j��� �

A � make�matrix ����m�����n�� f �

But this is extremely ine�cient because �f �i�j�	 is evaluated repeatedly for each �i�j��
not only to compute the �i�j��th component� but also during the computation of every
component to its right and below� �This is the typical exponential behavior of a recursively
de�ned Fibonacci function��

The trick is to recognize that the array is a �cache	 or �memo	 for the function� and to
use the array itself to access already�computed values� This can be done with a recursive
de�nition for A�

Def f X �i�j� � If �i �� �� or �j �� �� Then �

Else X�i��� j 


	 X�i��� j��


	 X� i � j��
 �

g � f A �

A � make�matrix ����m�����n�� g�

Here� the function f is a curried function of two arguments� a matrix and a pair of integers�
By applying it to A� g becomes a function on a pair of integers� which is a suitable argument
for make matrix� The function g� in de�ning A� carries a reference to A itself� so that the
computation of a component of A has access to other components of A�

In order for this to achieve the desired caching behavior� the language implementation must
handle this correctly� i�e�� the A used in g must be the same A produced by make matrix and
not a new copy of the de�nition of A�
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Note that in recurrences like this� it will be impossible in general to predict statically in what
order the components must be �lled to satisfy the dependencies� and so a compiler cannot
always �preschedule	 the computation of the components of an array� Thus� any implemen�
tation necessarily must use some of the dynamic synchronization techniques mentioned in
Section ���� This is true even for sequential implementations �lazy evaluation is one way to
achieve this dynamic synchronization and scheduling��

Assuming the implementation handles such recurrences properly� the main ine�ciency that
remains is that the If�Then�Else is executed at every location� This problem arises even
when there are no recurrences� In scienti�c codes� it is quite common to build a matrix with
di�erent �lling functions for di�erent regions� e�g�� one function for boundary conditions and
another for the interior� Even though this structure is known statically� make matrix forces
the use of a single �lling function that� by means of a conditional� dynamically selects the
appropriate function at each index� Compare this with the FORTRAN solution that would
merely use separate loops to �ll separate regions�

��� Example C �Inverse Permutation�

Unfortunately� make array does not do so well on Example C� Recall that B contains a per�
mutation of its indices� and we need to compute A� the inverse permutation�

Def find B i j � If �B�j
 �� i� Then j

Else find B i �j	�� �

Def g B i � find B i � �

A � make�array ���n� �g B� �

The problem is that each �g B i� that is responsible for �lling in the i�th location of A needs
to search B for the location that contains i� and this search must be linear� Thus� the cost
of the program is O�n���

It is possible to use a slightly di�erent array primitive to address this problem� Consider

make�array�jv �l�u� f

where each �f i� returns �j�v�� so that A�j
 � v� i�e�� the �lling function f is now responsible
for computing not only a component value� but also its index�� Example C may now be
written�

Def g B i � B�i
�i �

A � make�array�jv ���n� �g B� �

Of course� if B does not contain a permutation of 
��n� a run�time error must be detected�
either two �g B i��s will attempt to write the same location� or some �g B i� will attempt to
write out of bounds�

�We �rst heard this solution independently from David Turner and Simon Peyton Jones
 in a slightly
di�erent form� instead of having a �lling function f
 they proposed an association�list of index�and�value
pairs� This solution is also mentioned by Wadler in �����
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Note that this new primitive� make array jv� no longer has the simple and elegant character�
ization of make array as being a �cache	 for the �lling function� the relation between the
array and the �lling function is no longer straightforward� Further� when make array jv is
used for programs without index computations� such as Examples A and B� the compiler
must now explicitly establish that the indices computed by the �lling function form a legal
permutation�

��� Example D �Shared Computation�

A straightforward attempt to solve the shared computation problem is�

Def fh i � f �h i� �

Def gh i � g �h i� �

A � make�array ���n� fh �

B � make�array ���n� gh �

This program� of course� does not share any computation� �h i� is repeated for each i for
A and for B�

One possible way out is �rst to cache the values of �h i� in an array C�

C � make�array ���n� h �

Def fh i � f C�i
 �

Def gh i � g C�i
 �

A � make�array ���n� fh �

B � make�array ���n� gh �

The drawback is the overhead of allocating� writing� reading and deallocating the interme�
diate array C�

To regain the sharing� one could imagine the following scenario performed by an automatic
program transformer� The two make array�s are expanded into� say� two loops� Recognizing
that the loops have the same index bounds� they are fused into a single loop� Within the
resulting loop� there will be two occurrences of �h i�� this common subexpression can then
be eliminated�

We believe that this scenario is overly optimistic� It is very easy to modify the example very
slightly and come up with something for which an automatic program transformer would
have no chance at all� for example� by changing or displacing the index bounds of one array�
or by having a sharing relationship that is not one�to�one� etc�

��	 Discussion

Any functional data�structuring constructor is a complete speci�cation of a value� i�e�� it
includes the speci�cation of the components� For example� �Cons e� e
	 speci�es not only
that the result is a cons�cell� but also speci�es that its components are the values of e� and
e
�
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For large data structures such as arrays� it is obviously not feasible in general to enumerate
expressions for all the components as we do with Cons� Thus� their functional constructors
must specify a regular way to generate the components� Make array takes a ��lling	 parameter
f� and it sets up n independent computations� with the i�th computation responsible for
computing and �lling the i�th location�

We saw three problems with this �xed control structure� The wavefront example showed that
when the �lling function is di�erent for di�erent regions of the array� they have to be selected
dynamically using a conditional� even when the regions are known statically� In the inverse
permutation problem� the �xed control struture was totally di�erent from the desired control
structure� Finally� there was no convenient way to express shared computation between the
�lling computations for two data structures�

The variant make array jv achieved some 
exibility by leaving it up to each of the i computa�
tions to decide which index j it was responsible for� However� it still did not address the issue
of shared computations� which could only be performed with the overhead of constructing
intermediate arrays or lists� In recent correspondence with us� Phil Wadler has conjectured
that� using the version of make array jv that uses association lists of index�and�value pairs
together with his �listless transformer	 ����� these problems may indeed be solved without
any overhead of intermediate lists� We have yet to investigate the viability of this approach�

All the examples we have seen are quite small and simple� even so� we saw that the �rst�
straightforward solution that came to mind was in many cases quite unacceptable� and that
the programmer would have to think twice to achieve any e�ciency at all� The complications
that were introduced to regain e�ciency had nothing to do with improving the algorithms�
they were introduced to get around language limitations�

We are thus pessimistic about relying on a �xed set of functional data structuring primi�
tives� We have encountered situations where the problems illustrated above do not occur in
isolation� recursive de�nitions are combined with shared computations across indices and
across arrays� In these situations� writing e�cient programs using functional array prim�
itives has proven to be very di�cult� and is almost invariably at the expense of program
clarity� Perhaps� with so many researchers currently looking at this problem� new functional
data�structuring primitives will emerge that will allow us to revise our opinion�
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� I�Structures

In the preceding discussion� we saw that the source of ine�ciency is the fact that the various
functional primitives impose too rigid a control structure on the computations responsible
for �lling in the components of the data structure� Imperative languages do not su�er from
this drawback� because the allocation of a data structure �variable declaration� is decoupled
from the �lling�in of that data structure �assignment�� But imperative languages� with
unrestricted assignments� complicate parallelism because of timing and determinacy issues�
I�structures are an attempt to regain that 
exibility without losing determinacy�

In the Section ��
 we present the operations to create and manipulate I�structures� and in
Section ���� we show how to code the programming examples using I�structures� In these
sections� we rely on informal and intuitive explanations concerning parallelism and e�ciency�

Finally� in Section ��� we make these explanations precise by presenting an operational
semantics for a kernel language with I�structures� using a con
uent set of rewrite rules� This
section may be skipped on a �rst reading� however� there are several novel features about the
rewrite rules� not usually found elsewhere in the functional languages literature� Even for
the functional subset of Id� they capture precisely the idea of parallel� data
ow execution�
which is parallel and normalizing� they describe precisely what computations are shared �
an issue that is often left unspeci�ed� and� �nally� they are invaluable in developing one�s
intuitions about the read�write synchronization of parallel data structures� both functional
and otherwise�

��� I
structure operations

One can think of an I�structure as a special kind of array� each of whose components may
be written no more than once� To augment a functional language with I�structures� we
introduce three new constructs�

����� Allocation

An I�structure is allocated by the expression

I�array �m�n�

which allocates and returns an �empty	 array whose index bounds are �m�n�� I�structures are
�rst�class values� and they can contain other I�structures� functions� etc� We can simulate
multi�dimensional arrays by nesting I�structures� but for e�ciency reasons Id also provides
primitives for directly constructing multidimensional I�structures�

I�matrix ��mi�ni���mj�nj��

and so on�
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����� Assignments and Constraints

A given component of an I�structure A may be assigned �written� no more than once� using
a �constraint statement	�

A�i
 � v

Operationally� one thinks of this as assigning� or storing the value v into the i�th location
of array A� It is a run�time error to write more than once into any I�structure location� the
entire program is considered to be in error�

The assignment statement is only the simplest form of a constraint statement� A loop
containing constraint statements and no �Finally e	 clause is itself a constraint statement�
A block with no �In	 clause is a constraint statement� A procedure �f	 may have a body
that is a constraint statement� it is called using the constraint statement�

Call f x

In general� constraint statements appear intermixed with bindings in a block or loop�body�

����� Selection

A component of an I�structure A may be selected �read� using the expression�

A�i


This expression returns a value only after the location becomes nonempty� i�e�� after some
other part of the program has assigned the value�

There is no test for emptiness of an I�structure location� These restrictions� write�once�
deferred reads� and no test for emptiness� ensure that the language remains determinate�
there are no read�write races� Thus� the programmer need not be concerned with the timing
of a read relative to a write� All reads of a location return a single� consistent value� albeit
after an arbitrary delay�

����� Discussion

Semantically� one can think of each location in an I�structure as containing a logical term�
Initially� the term is just a logic variable� it is completely unconstrained� Assignment to
that location can be viewed as a re�nement of� or constraint on the term at that location�
This is what motivates our calling it a �constraint statement	� The single�assignment rule is
su�cient to preclude inconsistent instantiations of the initial logic variable� Of course� the
single�assignment rule is not a necessary condition to avoid inconsistent instantiations� We
could take the view that assignment is really uni�cation� and then multiple writes would be
safe so long as the values unify� Id does not currently take this view� for e�ciency reasons�

Some machine�level intuition� Conceptually� I�structures reside in an �I�structure store	�
When an allocation request arrives� an array is allocated in free space� and a pointer to this
array is returned� Every location in the array has an extra bit that designates it as being
�empty	�
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An I�structure selection expression becomes an �I�fetch	 request to the I�structure store�
Every request is accompanied by a �tag	� which can be viewed as the name of the contin�
uation that expects the result� The controller for the I�structure store checks the �empty	
bit at that location� If it is not empty� the value is read and sent to the continuation� If the
location is still empty� the controller simply queues the tag at that location�

An I�structure assignment statement becomes an �I�store	 request to the I�structure store�
When such a request arrives the controller for the I�structure store checks the �empty	 bit
at that location� If it is empty� the value is stored there� the bit is toggled to �nonempty	�
and if any tags are queued at that location� the value is also sent to all those continuations�
If the location is not empty� the controller generates a run�time error�

��� The Programming Examples

Let us now see how our programming examples are expressed in Id with I�structures�

����� Example A

The �rst example is straightforward�

� A � I�matrix ����m�����n�� �

�For i �� � To m Do

�For j �� � To n Do

A�i�j
 � i 	 j ��

In

A �

Recall that the loop is a parallel construct� so� in the above program� the loop bodies can be
executed in any order� sequentially forwards� as in FORTRAN� or all in parallel� or even
sequentially backwards�

The matrix A may be returned as the value of the block as soon as it is allocated� Meanwhile�
m � n loop bodies execute in parallel� each �lling in one location in A� Any consumer that
tries to read A�i�j
 will block until the value has been stored by the corresponding loop
body�

����� Example B �Wavefront	

� A � I�matrix ����m�����n�� �

�For i �� � To m Do

A�i��
 � � � �

�For j �� 
 To n Do

A���j
 � � � �

�For i �� 
 To m Do

�For j �� 
 To n Do

A�i�j
 � A�i���j
 	 A�i���j��
 	 A�i�j��
 ��

In

A �
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The matrix A may be returned as the value of the expression as soon as it is allocated�
Meanwhile� all the loop bodies are initiated in parallel� but some will be delayed until the
loop bodies for elements to their left and top complete� Thus a �wavefront	 of processes �lls
the matrix�

Note that we do not pay the overhead of executing an If�Then�Else expression at each index�
as in the functional solution�

It is worth emphasizing again that loops are parallel constructs� In the above example� it
makes no di�erence if we reverse the index sequences�

�For i �� m Downto 
 Do

�For i �� n Downto 
 Do �����

The data dependencies being the same� the order of execution would be the same� This is
certainly not the case in imperative languages such as FORTRAN�

����� Example C �Inverse Permutation	

� A � I�array ���n� �

�For i �� � To n Do

A�B�i

 � i �

In

A �

The array A may be returned as the value of the expression as soon as it is allocated�
Meanwhile� all the loop bodies execute in parallel� each �lling in one location� If B does not
contain a permutation of 
��n� then a run�time error will arise� either because two processes
tried to assign to the same location or because some process tried to write out of bounds�

����� Example D �Shared Computation	

� A � I�array ���n� �

B � I�array ���n� �

�For i �� � To n Do

z � h i �

A�i
 � f z�

B�i
 � g z �

In

A�B �

The arrays A and B may be returned as the value of the expression as soon as they are
allocated� Meanwhile� all the loop bodies execute in parallel� each �lling in two locations�
one in A and the other in B� In each loop body� the computation of �h i� is performed only
once�

��� Operational Semantics for a Kernel Language with I
structures

In this section we make the parallelism in the data
ow execution of Id more precise� First�
some historical notes� For a long time� the parallelism of Id was described only in terms
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of data
ow graphs� the machine language of the data
ow machine� In ���� we made a
preliminary attempt at describing it more abstractly� in terms of a set of rewrite rules� This
was re�ned by Traub in ����� and subsequently by Ariola and Arvind in ���� For a precise
formalization and proofs of important properties such as con
uence� the interested reader
is referred to the last reference� Our description here borrows heavily from that reference�
sacri�cing much detail and omitting all proofs� in the interest of clarity�

The operational semantics are given as an Abstract Reduction System� i�e�� a set of terms
and a binary reduction relation that describes how to transform one term into another� The
general form of a rewrite rule is�

E� � ISS� �� E� � ISS�

where E � Expression and ISS � I�Structure Stores� We begin by describing these syntactic
categories�

����� Syntax of the Kernel Language
 and its relation to Id

To simplify the exposition� we consider only a kernel language whose syntax is described
in Figure 
� The translation of Id programs into the kernel language should be mostly
self�evident� a few issues are discussed later in this section�

A program is a list of user�de�ned procedures and a main expression� The de�nitions may
be recursive and mutually recursive�

The de�nitions in a Program are static� i�e�� the de�nitions are not themselves part of the
term being rewritten� though each de�nition represents an instance of the family of rewrite
rules for the apply operator� The Main expression is only the initial expression in the term
being rewritten� Expressions in the static part of the program� i�e�� the right�hand sides
of de�nitions and the main expression� are drawn only from Initial Terms� The syntactic
category Runtime Terms is used to describe additional terms of interest and terms that may
come into existence only during execution�

Each constant has an arity n �numerals� boolean constants� etc�� are all considered to be
constants of arity ��� A constant of arity n � � is always applied to n arguments� i�e��
constants are never curried� Currying of user�de�ned procedures is simulated by the apply

operator which is a constant of arity �� For clarity� we will often omit the arity superscript�
and we will sometimes use in�x notation for well�known primitives� thus� �x	y	 instead of
�plus x y	� We assume that procedure identi�ers �ProcIds� are distinct from other identi�ers�

In the kernel language� all subexpressions are named by identi�ers� Thus� the Id expression
�
�	�����	 is written as follows in the kernel language�

f x � plus� 
� y �

y � times� �� ��

In

x g

�




Programs�
Program ��� De�nition � � � � � De�nition � Main

De�nition ��� Def ProcId Identi�er � � � Identi�er
� �z �

n

� Expression �n � ��

Initial Terms�
ProcId ��� Identi�er
Main ��� Block

Expression ��� SimpleExpr
j Constantn SimpleExpr � � �SimpleExpr

� �z �

n

�n � ��

j Block
SimpleExpr ��� Constant� j Identi�er j ProcId
Constant� ��� � j � j � � � j true j false j nil j � � �
Constant� ��� mk closure j hd j tl j � � �
Constant� ��� plus j minus j cons j

allocate j I select j
apply j � � �

Constant� ��� cond j � � �
Block ��� f Statement �

� � �
Statement

In

SimpleExpr g
Statement ��� Binding j Command
Binding ��� Identi�er � Expression
Command ��� null j

I set SimpleExpr SimpleExpr SimpleExpr

Runtime Terms�
Constant� ��� I fetch�

Command ��� I store Loc SimpleExpr
Value ��� Constant � j Closure j I�structure
Closure ��� �closure ProcId Loc � � �Loc

� �z �

m

� �
 � m � n
 the � of args for ProcId�

I�structure ��� �I structure l u Loc � � �Loc
� �z �

m

� �m � u� l � 
�

Loc ��� l� j l� j � � �
ISS ��� empty j

�Loc�Value�������Loc�Value� j
inconsistent

Figure 
� Syntax of Kernel Language
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Thus� kernel expressions are more tedious to write than their Id counterparts� but the rewrite
rules are simpli�ed considerably�

Blocks are like �letrec	 blocks� i�e�� the bindings may be recursive and mutually recursive�
they follow the usual static scoping rules and the order of the bindings is not signi�cant� For
simplicity� bindings in blocks do not have formal parameters� There is no loss of expressive
power� we assume that internal procedure de�nitions can be compiled out using techniques
such as lambda�lifting �
���

In an Id conditional expression�

if e f g

nothing is executed in f or g until e is evaluated� Subsequently� exactly one of the ex�
pressions f and g is evaluated� Unfortunately� such contextual restrictions on rewrite rules
usually complicate reasoning about a reduction system� Instead� we assume that the above
conditional expression is �rst expressed in Id like this�

� Def F x � f �

Def G x � g �

H � cond e F G

In

H � �

where cond is a new primitive that simply returns its second or third argument depending on
the boolean value of its �rst argument� The formal parameters x and the actual parameter �
are just dummy arguments� This form can then be translated as usual to the kernel language�
The same e�ect is achieved� exactly one of f and g is evaluated� without any contextual
restrictions on the rewrite rules�

As a step towards translation into the kernel language� Id I�structure constructs are trans�
formed as shown below�

I array ebounds �� f b � ebounds �

b� � I select b � �

b� � I select b 
 �

a � allocate b� b�
In

a g
ea�ei
 �� f a � ea �

i � ei
In

I select a i g
ea�ei
 � ev � �� a � ea �

i � ei �

v � ev �

I set a i v �

In Id� a block or a loop may be used as a constraint statement� in which case it does not
return any value� It can always be converted into an expression returning a dummy value
that is subsequently discarded by binding it to an unused identi�er� Similarly� the statement
Call f x can be converted into a binding a � f x where a is unused� Loop expressions can
then be transformed to tail�recursive procedures in the standard way�
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����� Runtime Expressions
 Values and the I�structure store

Execution begins with the term�

Main � empty

i�e�� the main expression of the program �drawn from Initial Terms� and an empty I�structure
store� As the reduction proceeds� the expression may be transformed to contain runtime
terms� and the I�structure store grows with new location�value pairs� We use l and v �possibly
with subscripts� as meta�variables for locations and values� respectively� The Value category
corresponds exactly to �tokens	 in the data
ow machine�

We assume an in�nite supply of new locations� Location names are global� i�e�� they do not
follow scoping rules due to Blocks� The ordering of locations in the store is immaterial� In
the rewrite rules� we use the notation�

ISS��l�v�


both as a pattern to match any store containing an �l�v� pair and as a constructor to augment
a store ISS with a new pair �l�v��

����� Canonicalization

To simplify the exposition� we assume that rewrites are performed only on canonical terms�
Thus� the overall reduction process can be viewed as repeatedly performing a rewrite followed
by a canonicalization� There are three steps in canonicalization�

Block Flattening

Nested blocks can be 
attened� whether the nested block is in the bindings or in the �In	
expression�

f B� �

B� �

� � �
x � f C� �

C� �

� � �
In

R g
� � �
Bn

In

f D� �

D� �

� � �
In

S g

g

��

f B� �

B� �

� � �
C �

� �

C �

� �

� � �
x � R� �

� � �
Bn �

D�

� �

D�

� �

� � �
In

S� g
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The �primed	 terms on the right indicate suitable ��renaming of identi�ers to avoid name
clashes�� As will become evident later� an inner block may have zero bindings to be lifted
into the outer block�

Identi�er Substitution and Binding Erasure

The substitution rules for identi�ers are designed very carefully to model the sharing of
computations precisely�


� If x and y are distinct identi�ers and there is a binding �x � y	 in a term� then we can
eliminate this binding from the term after replacing all uses of x with y�

�� If x is an identi�er and v a value� and there is a binding �x � v	 in a term� then we
can eliminate this binding from the term after replacing all uses of x with v�

Of course� in the �rst rule� one must be cognizant of scoping due to blocks to avoid the
inadvertant capture of y�

The major deviation from substitution rules for the lambda calculus� say� is that x must
be bound to a Value and not to an arbitrary expression before it can be substituted� This
ensures that unevaluated expressions are never duplicated� i�e�� they are evaluated exactly
once�

Null erasure

All null statements in blocks can be eliminated�

����� Rewrite Rules

The general notation for a rewrite rule is�

M�p�� � ISS� �� M�p�� � ISS�

where M�p� is the main program expression and p is a pattern that identi�es any matching
subexpression e� and ISS is the I�structure store� The subexpression e is called a redex � or
reducible expression�

For most rewrite rules� the I�structure store is irrelevant� these rules are written more suc�
cinctly�

p� �� p�

�However
 recall that location names are not identi�ers
 so they are never renamed�
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with the understanding that they really abbreviate the full form above�

There may be more than one redex in the program term� The data
ow rule requires all such
redexes to be reduced simultaneously� Of course� in a real implementation only a subset of
redexes can be rewritten at any step� We discuss this issue in more detail in Section ������

� rules�

We assume suitable � rules for all the primitive functions� For example�

m�n �� m � n
���

���

�m and n numerals�

Conditionals�

cond true f g �� f

cond false f g �� g

User�de�ned procedures
 Closures
 Partial and Full Applications�

Suppose we had the following user�de�ned procedure of n�arguments�

Def f x� � � � xn � Ebody �

Initially� f appears in the program as an argument to mk closure� whose rewrite rule is shown
below�

mk closure f �� �closure f� �f � ProcId�

The closure is then applied to arguments� one at a time� However� unless the argument is
its �last	 argument� we simply create a new closure� allocating a new location to hold the
value of the argument�

apply �closure f l� � � � lj��� ej �� f I store lj ej
In

�closure f l� � � � lj�� lj� g

j � n�

new lj

Note� however� that the new closure is ready to be used as a value immediately � even if
the argument ej is not yet a value� For example� the closure may now be applied to more
arguments� However� the rules ensure that ej is evaluated exactly once�

It is only when a closure is applied to the �last	 argument expression that we invoke the
procedure body� i�e�� rewrite using the procedure de�nition�

apply �closure f l� � � � ln��� en �� f x� � I fetch l� �

���

xn�� � I fetch ln�� �

xn � en
In

Ebody g
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Again� note the parallel data
ow behavior� The body of the procedure becomes ready for
evaluation even though all the argument expressions may still be unevaluated� However� the
substitution rules for identi�ers and for I fetch ensure that the arguments are not substituted
into the body until they have reduced to values� Further� each argument is evaluated exactly
once� even if it is used many times in the procedure�

I�structure Operations

Allocation�

allocate m n �� �I structure m n lm lm�� � � � ln�� ln�

m� n integer values�

m � n�

lm � � � ln new

I set�s and I select�s� after address computations� become I fetch�es and I store�s against
speci�c locations�

I set �I structure m n lm � � � li � � � ln� i e �� I store li e
i a value�
m � i � n

I select �I structure m n lm � � � li � � � ln� i �� I fetch li
i a value�
m � i � n

Note that the I�structure and index arguments must be values� but the third argument �e�
to I set need not be a value� There are various ways to handle out�of�bounds errors� but we
do not address them here�

An I store augments the I�structure store with a new location�value pair� provided that the
store does not already contain the location� If it does already contain the location� the entire
I�structure store goes to an inconsistent state�

M�I store l v
 � ISS �� M�null
 � ISS��l�v�
 � � any �l�v�� in ISS

M�I store l v
 � ISS��l�v��
 �� M�null
 � inconsistent

An I fetch against a location can be reduced only after a value is present in that location�

M�I fetch l
 � ISS��l�v�
 �� M�v
 � ISS��l�v�


Functional Data Structure Operations

These can be expressed in terms of I�structure operations� Construction�

cons e� e� �� f c � allocate � 
 �

I set c � e� �

I set c 
 e�
In

c g
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and selection�

hd e �� I select e �

tl e �� I select e 


We include these as rewrite rules only because it then allows us to de�ne a very simple
syntactic criterion to limit user�programs to functional programs� i�e�� by omittingCommands
from Initial Terms while keeping them in Runtime Terms� But for this reason� we could treat
the above rewrite rules as ordinary de�nitions supplied by the user� or as a compile�time
transformation�

����� An Example

Let us look at a small example that demonstrates the nonstrict behavior of data structures�
The following Id expression�

� p � cons 
� p

In

hd p �

de�nes p to be an �in�nite	 list of 
��s� and returns only the �rst element of it� Below� we
show a possible reduction� At each step� we enclose the chosen redex�es� in a box� Many
steps� especially canonicalization steps� are omitted for brevity�

� p � cons 
� p �

r � hd p

In

r � � empty

��

� c � allocate � 
 �

I�set c � 
� �

I�set c 
 p �

p � c �

r � I�select p �

In

r � � empty

��

� I�set �I�structure � 
 L� L
� � 
� �

I�set �I�structure � 
 L� L
� 
 �I�structure � 
 L� L
� �

r � I�select �I�structure � 
 L� L
� �

In

r � � empty

� I�store L� 
� �

I�store L
 �I�structure � 
 L� L
� �

r � I�fetch L�

In

r � � empty

��



��

� r � I�fetch L�

In

r � � �L��
���L
��I�structure � 
 L� L
��

��

�

In


�� � �L��
����L
��I�structure � 
 L� L
��

In the �nal state� there are no remaining statements in the block� and the result value is ���
The �nal I�structure store contains a self�referential structure�

����� Termination and Answers

The reduction terminates as soon as we reach a state N � ISS where either ISS � inconsistent

or N is in normal form� i�e�� it contains no redexes� It is useful to identify the following four
categories of termination�

� Proper termination with answer v�

� In v � � ISS

where v � Value� ISS �� inconsistent�

� Improper termination with inconsistent I�structure store�

N � inconsistent

Note that N does not have to be in normal form� Further�

� M�N M � inconsistent � N � inconsistent

� Improper termination with answer v�

� s� � ��� � sk In v � � ISS

where k � 
� v � Value� ISS �� inconsistent�

� Improper termination with deadlock�

� s� � ��� � sk In e � � ISS

where k � 
� e � � Value� ISS �� inconsistent�

The last two situations arise only if there are unreduced I fetch expressions in the normal
form� Here are three pathological Id programs with these behaviors� respectively�

� a � I�array ������ � a � I�array ���
�� � x � y	��

x � a��
 a��
 � a�

 � y � x	��

In a�

 � a��
 � In


� � In 
� �

a �

In our data
ow implementation of Id� we print an answer as soon as it is available� When
the program subsequently terminates� additional information about improper termination is
printed� if necessary�

��



����� Discussion of Kernel Language and Rewrite rules

Reduction Strategies

The rewrite rules do not themselves specify any strategy for choosing redexes� Our im�
plementation uses a �parallel data
ow strategy	� i�e�� it attempts to evaluate all redexes
concurrently� Of course� because of limited resources� only some subset of available redexes
will be reduced at each step� A poor choice of redexes may place severe demands on the
resources of the machine� For example� an array may be allocated long before it is actually
used� thus utilizing storage ine�ciently� We have studied various approaches to controlling
the unfolding of a parallel computation so that it uses resources e�ciently ��� 

� 
��� These
issues are relevant to all parallel languages� but the details are beyond the scope of this
paper�

In our rewrite rules� no redex is ever duplicated or discarded� Thus� the number of reductions
performed is independent of the reduction strategy� As a consequence� the only expressions
in an Id program that are not evaluated are those that are not selected by a conditional�
Thus� consider the following two Id programs�

� a � I�array ����� � � a � I�array ����� �

x � � a��
 � 
� In a��
 � �

y � � a��
 � 
� In a�

 � �

z � if p z � if p

then � a��
 � 
� In a��
 � then x

else � a��
 � 
� In a��
 � else y

In In

z � z �

The program on the left will terminate properly with value �� or ��� only one of the two
array assignments will be performed� The program on the right will always terminate im�
properly with an inconsistent store because both array assignments will always be performed�
In our experience� this has never been a complication� it is not much di�erent from the
way in which we control unbounded recursion in ordinary programming languages using
conditionals�

The functional subset and its relation to lazy languages

If we wish to limit ourselves to purely functional programs� the following syntactic criterion
is su�cient� there should be no Commands in the initial program� It is also reasonable
to disallow allocate expressions as they are quite useless without Commands� Note that
Commands may still appear during the execution of cons and partial applications� we disallow
them only in initial programs� However� it is easy to prove that under these conditions� it
is impossible for two I stores to go to the same location and� therefore� it is impossible to
produce an inconsistent store�

Let us reexamine the issue of termination for the functional subset� Consider the following
Id program�

Def diverge x � diverge x �

Def f y � � �

f �diverge ��

��



This program will not terminate under our rewrite rules because we never discard �unnec�
essary	 expressions like �diverge �	� The reason is that in general� with I�structures� it
may not be safe to do so� any expression may ultimately make the store inconsistent� thus
changing the answer� For con
uence� therefore� we cannot discard any expression�

If we restrict ourselves to functional programs� however� this danger of inconsistency cannot
arise� and so it is safe to add the following rewrite rule �let us call it the discard rule��

f s	 �

���

sn �

In

v g

�� f
In

v g

v � Values

Note that this is the only rule that can discard a redex� Further� no rule ever duplicates
a redex� Thus� without the discard rule� the number of reductions performed �and� thus�
the termination behavior� is independent of the reduction strategy� so that a normal�order
strategy would not be particularly useful� With the discard rule� however� the reduction
strategy does a�ect the number of reductions performed and can a�ect termination� Because
our rewrite rules also capture the sharing of expressions� they would� under normal�order�
accurately describe lazy evaluation and graph�reduction machines �����

Note� however� that with the discard rule� the parallel data
ow strategy will produce exactly
the same termination behavior that normal�order would� even though it may perform some
extra� unnecessary reductions� Thus functional Id� even though it does not use lazy evalua�
tion� implements exactly the same nonstrict semantics that normal�order does� i�e�� functions
can return values even if their arguments do not terminate� To our knowledge� Id is unique
in this respect� every other functional language that implements nonstrict semantics does
so using lazy evaluation�	

Con�uence

The con
uence of the reduction system has been proved in ���� Note that con
uence holds for
the entire kernel language� including all I�structure operations� and not just for a functional
subset�

	Perhaps for this reason
 nonstrictness is often incorrectly equated with laziness in the literature�

�




� Using I�structures to Implement Array Abstractions

From the point of view of programming methodology� it is usually desirable for the pro�
grammer �rst to implement higher�level array abstractions and subsequently to use those
abstractions�

	�� Functional Array Abstractions

As a �rst example� we can implement the functional make array primitive�

Def make�array �m�n� f � � A � array �m�n� �

�For i �� m To n Do

A�i
 � f i �

In

A � �

Note that there is all the parallelism we need in this implementation� The array A can be
returned as soon as it is allocated� Meanwhile� all the loop bodies execute in parallel� each
�lling in one component� Any consumer that attempts to read a component will get the
value as soon as it is �lled�

Similarly� here is an e�cient� parallel implementation for make matrix�

Def make�matrix ��mi�ni���mj�nj�� f �

� A � matrix ��mi�ni���mj�nj�� �

�For i �� mi To ni Do

�For j �� mj To nj Do

A�i�j
 � f �i�j� ��

In

A � �

A functional vector sum�

Def map
 f A B � � m�n � bounds A �

C � array �m�n� �

�For i �� m To n Do

C�i
 � f A�i
 B�i
 �

In

C � �

vector�sum � map
 �	� �

Here� we �rst de�ne a more general abstraction map
 for applying a binary function f to
each pair of elements taken itemwise from two vectors� and then de�ne vector sum as the
partial application of map
 to the speci�c binary function �		� Again� the solution has all
the parallelism we need� The array C is returned as soon as it is allocated� Meanwhile�
independent processes execute in parallel� each computing one sum and storing it in one
location in C�

As another demonstration of the usefulness of programming with abstractions like map
�
consider a function to add two vectors of vectors �i�e�� a vector sum where the components
are not numbers� but vectors themselves��

��



vector�of�vectors�sum � map
 vector�sum �

An implementation of the functional make array jv primitive�

Def make�array�jv �m�n� f � � A � array �m�n� �

�For i �� l To u Do

j�v � f i �

A�j
 � v �

In

A � �

A primitive to make two arrays in parallel�

Def make�two�arrays �m�n� f � � A � array �m�n� �

B � array �m�n� �

�For i �� m To n Do

va�vb � f i �

A�i
 � va �

B�i
 � vb �

In

A�B � �

We leave it as an exercise for the reader to use make two arrays to produce an elegant solution
to the shared computation problem �Example D��

It is clear that it is straightforward for the programmer to use I�structures to implement any
desired functional array abstractions� the solutions are perspicuous� e�cient� and there is
no loss of parallelism�

It is likely that even if abstractions like make array are supplied as primitives� I�structures are
a useful implementation mechanism for the compiler� Supplying such abstractions as prim�
itives is useful for another reason� Consider an abstraction such as make array jv which� if
given an improper �lling function f� could cause multiple I stores against the same location�
Currently� the e�ect of this is drastic� the entire program immediately terminates improp�
erly with an inconsistent store� With functional abstractions as primitives� it is possible
to localize such errors� The implementation of make array jv could examine all the indices
computed by f before releasing the array pointer to its caller� If an index was computed
twice� the array value returned could be an error value� without causing the whole program
to blow up� Such an implementation comes with the loss of some� but not all� concurrency�
i�e�� all the indices� but not the corresponding values� need to be computed before the array
is returned�

Such localization is not possible in a language with I�structures because� unlike functional
constructors� the index calculations may be spread over arbitrary regions of the program�

	�� Nonfunctional Array Abstractions

It has been our experience that functional abstractions are not the only ones that lead to
compact� elegant programs� Consider the following �nonfunctional� �array��lling	 abstrac�
tion�

��



Def fill A ��mi�ni���mj�nj�� f �

�For i �� mi To ni Do

�For j �� mj To nj Do

A�i�j
 � f �i�j��� �

which �lls a rectangular region of the given matrix A� Our wavefront program can then be
written as follows�

� A � matrix ����m�����n�� �

border �i�j� � � �

interior �i�j� � A�i���j
 	 A�i���j��
 	 A�i�j��
 �

Call fill A ����m�������� border �

Call fill A ��������
�n�� border �

Call fill A ��
�m���
�n�� interior

In

A �

Of course� for more e�ciency� we could de�ne special abstractions for �lling in horizontal or
vertical regions�

Def fill�col A ��mi�ni��j� f � �For i �� mi To ni Do

A�i�j
 � f �i�j�� �

Def fill�row A �i��mj�nj�� f � �For j �� mj To nj Do

A�i�j
 � f �i�j�� �

and use them to �ll the borders of our matrix�

��



� Limitations of I�structures

While we believe that I�structures solve some of the problems that arise with functional data
structures� we have frequently encountered another class of problems for which they still do
not lead to e�cient solutions�

Consider the following problem� we are given a very large collection of generators �say a
million of them�� each producing a number� We wish to compute a frequency distribution
�histogram� of these values in� say� 
� intervals� An e�cient parallel solution should allocate
an array of 
� �accumulators	 initialized to �� and execute as many generators as it can
in parallel� As each generator completes� its result should be classi�ed into an interval
j� and the j�th accumulator should be incremented� It does not matter in what order
the accumulations are performed� so there are no serious determinacy issues� except for the
following synchronization requirement� there is a single instant when the resulting histogram
is ready �i�e�� available to consumers�� it is ready when all the generators have completed�
To avoid indeterminacy� no consumer should be allowed to read any location of the histogram
until this instant�

A second example� In a system that performs symbolic algebra computations� consider the
part that multiplies polynomials� A possible representation for the polynomial

a� � a�x � a�x
� � a�x

���� � anx
n

would be an array of size n � 
 containing the coe�cients a�� ���� an� To multiply two
polynomials A and B of degree n together� we �rst need to allocate an array of size �n� with
each location containing an �accumulator	 initialized to �� then� for each j� initiate �j � 
�
processes to compute a� � bj� a� � bj��� ���� aj � b�� as each of these processes completes�
its result should be added into the j�th accumulator� The order of the accumulation at any
index does not matter�

The synchronization requirement here is more complex� A consumer for a location in the
result array may read it as soon as the j � 
 processes attached to it have completed� this
may occur before other locations are ready� Contrast this with the histogram example where
the entire array became available to consumers at a single instant�

These problems cannot be solved e�ciently either with any of the functional data structures
that we have seen so far� or with I�structures� There are two fundamental problems to be
addressed�


� How to model the accumulators� With I�structures and functional data structures�
once a location in an array has a value� it cannot be updated at all� even though the
update occurs in a safe� structured manner�

�� How to express the termination of the accumulation� In the histogram example� the
termination was a global condition� In the polynomial example� termination is tied to
each location�

��



We mention some solutions to this problem at the end of the next section�
 �See also ����
for a connection between accumulators and logic variables��


In ����
 Wadler has proposed yet another functional array operation to handle such �accumulation�
problems� This construct combines an association�list of index�and�value pairs
 together with a reduction
operator to specify the array� We do not yet know what are the implementation issues for this construct�

��



	 Conclusion

In this paper� we have studied the issue of data structures for parallel computing� We saw
that with functional data structures� it can be di�cult simultaneously to achieve e�ciency�
parallelism� and program clarity� We showed that I�structures go a long way towards solving
this problem�

I�structures grew out of a long�standing goal in our group to have functional languages
suitable for general�purpose computation� which included scienti�c computations and the
array data�structures that are endemic to them� A historical perspective� the term �I�
structure	 has been used for two separate concepts� One is an architectural idea� i�e�� a
particular means of implementing a synchronization mechanism in hardware ���� The other
is a language construct� a way to express incrementally�constructed data structures� The
two are independent� the architectural support makes sense even for FORTRAN� and the
language constructs make sense even on stock hardware� The emphasis in this paper is on
the language construct�

Originally ����� 
��
�� an �I�structure	 was not a separate kind of object with its own opera�
tions� rather� a functional array built using a �ne�grained update�like operator in a particular
incremental manner �with no repeated indices� was termed an I�structure� It was hoped
that the compiler� through analysis� would be able to recognize such incremental construc�
tions and to implement them e�ciently using destructive updates� This approach was later
abandoned after it was judged to be infeasible�

The connection with logic variables was originally inspired by Lindstrom�s FGL�LV �
�� in

����
���� This clari�cation of the role of I�structure cells gave us the basis on which to
incorporate the current view of I�structures into the language as �rst class objects with their
own operations and semantics ��
� ��� which is substantially di�erent from the original view
of I�structures� Further progress on the semantics of logic variables in functional languages
is reported in �
���

The introduction of any nonfunctional feature �such as I�structures� into a functional lan�
guage is not without cost� the language loses referential transparency and with it� the
ability to reason about programs� do program transformations for optimization� etc� In the
case of I�structures� the loss of referential transparency is evident� For example� values bound
in these two statements are not semantically equivalent�

AA � � a � I�array ������

In

a� a � �

BB � I�array ������� I�array ������

They can be distinguished by the following function�

Def f XX � � Xa�Xb � XX�

Xa��
 � 
��

Xb��
 � 
�

In


�� �

��



When applied to AA� f will produce an inconsistent store� whereas when applied to BB� it
terminates properly with value ��� Even so� it is still much easier to reason about programs
with I�structures than it is to reason about programs in unconstrained imperative languages�
because of the absence of timing issues�

A functional language with I�structures can be made referentially transparent by adopting a
�relational	 syntax �like logic programming languages� rather than a functional one� Refer�
ential transparency is lost in Id because the �I array	 construct allocates an array without
naming it� To �x this� we �rst replace it with a new construct called �array bounds	� Array
allocation is then achieved by the constraint statement�

array�bounds �x� � �m�n�

which instantiates �x	 to be an array with bounds �m�n�� The array is thus not allocated
anonymously�

But this is not enough� functional abstraction still allows us to produce anonymous arrays�

Def alloc �m�n� � � array�bounds �x� � �m�n�

In x � �

To prevent this� procedural abstraction �indeed all constructs� must be converted to a rela�
tional form� For example� a procedure cannot return a value explicitly� rather� it must take
an additional argument which it instantiates to the returned value� The alloc procedure
would be thus be written as follows�

Def rel�alloc �m�n� x � � array�bounds �a� � m�n �

x � a �

For example� the invocation �rel alloc ������ a	 will instantiate �a	 to an array of size 
��
Further� to specify that �a	 is a �place�holder	 argument rather than a value passed to
rel alloc� we must annotate it appropriately� say with ��	� The invocation must therefore
be written as �rel�alloc ������ �a	�

By adopting this annotated relational syntax� we believe that we could achieve referential
transparency� at the cost of complicating the syntax considerably� We are unconvinced that
this is a useful thing to do�

Because I�structure operations compromise referential transparency� as a matter of pro�
gramming style we strongly encourage the programmer to use only functional abstractions
wherever possible� A good Id programmer will separate the program into two parts� a
part that de�nes convenient functional data�structure abstractions in terms of I�structures
�as shown in Section ��� and the rest of the program that uses only those abstractions and
does not explicitly use I�structures� The latter part of the program is then purely functional�
and amenable to all the techniques available to reason about� and to manipulate functional
programs�

Postscript�

Writing scienti�c applications in Id has always been part of our methodology to evaluate
existing Id constructs and to suggest new ones� Based on the substantial experience we have
had with I�structures since we began writing this paper in 
���� we have recently devised a

��



new� functional notation for arrays called �array comprehensions	 ���� that can� in fact� be
used to express all four examples used in this paper� For example� the wavefront program�

� A � �matrix ���m�����n�

� ����
 � �

� �i��
 � � �� i �� 
 To m

� ���j
 � � �� j �� 
 To n

� �i�j
 � A�i��� j 
 	

A�i���j��
 	

A� i �j��
 �� i �� 
 To m � j �� 
 To n�

In

A �

An array comprehension begins with a speci�cation of the shape �e�g�� matrix� and size
�index bounds� of the data structure� and contains one or more region�speci�cation clauses�
For example� the clause above speci�es that the contents of location �
�
� is 
� the second
clause speci�es that the contents of location �i�
� is 
 for all � 	 i 	 m� and so on� This
program essentially compiles into exactly the program shown in Section ���� i�e�� with the
same parallelism and space e�ciency�

Another example� the inverse permutation program�

�array ���n�

� �B�i

 � i �� i �� � to n�

A simple extension to array comprehensions also handles some �accumulator	 problems� A

��bucket histogram of a million samples�

�array ������

� �i
 � � �� i �� � to ��

accumulate �	�

� �classify s
 gets � �� s �� million�samples �

The clause before accumulate speci�es the initial value of the histogram buckets �all zeroes��
The accumulate clause speci�es that �		 is the accumulation operator� The �nal clause
speci�es that for each sample s� 
 is added to the j�th bucket� where s is classi�ed into the
j�th bucket�

The array comprehension construct greatly enlarges the set of applications that can be
captured succinctly in a purely functional style without losing parallelism and e�ciency�
However� we frequently encounter other applications that still require the greater 
exibility
of I�structures� Work on generalizing array comprehensions continues�

��
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