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Abstract
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then present I-structures as an alternative, and show elegant, efficient and parallel
solutions for the program examples in Id, a language with I-structures. The
parallelism in Id is made precise by means of an operational semantics for Id
as a parallel reduction system. I-structures make the language nonfunctional,
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1 Introduction

There is widespread agreement that only parallelism can bring about significant improve-
ments in computing speed (several orders of magnitude faster than today’s supercomputers).
Functional languages have received much attention as appropriate vehicles for programming
parallel machines, for several reasons. They are high-level, declarative languages, insulating
the programmer from architectural details. Their operational semantics in terms of rewrite
rules offers plenty of exploitable parallelism, freeing the programmer from having to iden-
tify parallelism explicitly. They are determinate, freeing the programmer from details of
scheduling and synchronization of parallel activities.

In this paper, we focus on the issue of data structures. We first demonstrate some difficulties
in the treatment of data structures in functional languages, and then propose an alternative,
called “I-structures”. Our method will be to take some test applications, and compare their
solutions using functional data structures, and using I-structures. We study the solutions
from the point of view of

e efficiency (amount of unnecessary copying, speed of access, number of reads and writes,
overheads in construction, etc.),

e parallelism (amount of unnecessary sequentialization), and

e case of coding.

We hope to show that it is very difficult to achieve all three objectives using functional data
structures.

Since our ideas about I-structures evolved in the context of scientific computing, most of
the discussion will be couched in terms of arrays.! All our program examples are written
in Id, which is a functional language augmented with I[-structures. It is the language we
use in our research on parallel architectures. Of course, the efficiency and parallelism of a
program also depend on the underlying implementation model. Our findings are based on
our own extensive experience with dataflow architectures— in particular the MIT Tagged-
Token Dataflow Architecture, the centerpiece of our research [4, 25]. We have also carefully
studied other published implementations of functional languages. However, it is beyond the
scope of this paper to delve into such levels of implementation detail, and so we conduct
our analyses at a level which does not require any knowledge of dataflow on the part of the
reader. In Section 5, we present an abbreviated version of the rewrite-rule semantics of Id,
which captures precisely the parallelism of the dataflow machine; we leave it to the intuition
of the reader to follow the purely functional examples prior to that section.

While the addition of I-structures takes us beyond functional languages, Id does not lose
any of the properties that make functional languages attractive for parallel machines. In
particular, Id remains a higher-order, determinate language, i.e., its rewrite-rule semantics
remains confluent. In the final section of the paper, we discuss the implications of such
an extension to a functional language. We also show that I-structures are not enough—
there are some applications that are not solved efficiently whether we use functional data
structures or I-structures. This class of applications is a subject of current research.

'However, it would be erroneous to infer that our conclusions are relevant only to programs with arrays.



2 The Test Problems

In this section we describe four small example applications which we use to study functional
data structures and [-structures.

2.1 Example A

Build a matrix with
Ali,jl=i+]

Note that the computation for each element is independent of all the others.

2.2 Example B (Wavefront)

Build a matrix with:

Ali,jl=Ali—1,j]+ Ali — 1,5 — 1]+ A[i,j — 1]

The left and top edges of the matrix are all 1. The computation of each remaining element
depends on its neighbors to the left and above. In a parallel implementation one can thus
imagine the computation proceeding as a “wavefront” from the top and left edges to the
bottom-right corner of the matrix:

1 5 7
1 5 25
1 7 125




2.3 Example C (Inverse Permutation)

This problem was posed to one of us (Arvind) by Henk Barendregt, and is illustrates the
difficulties of dealing with computed indices. Given a vector B of size n containing a per-
mutation of integers 1..n, build a new vector A of size n such that:

A[Bi]] =i

The computation for each of A’s components is independent of the others. (This is called
an inverse permutation because the result A also contains a permutation of 1..n, and when
the operation is repeated with A as argument, the original permutation is returned.)

2.4 Example D (Shared Computation)

Build two arrays A and B of size n such that

Alil = f (hi)
Bli] = g (h1)

such that the h part of the computation for every i’th element of the two arrays is shared.?

This example illustrates shared computation across arrays. Sharing could also occur across
indices in a single array— for example, the computations for A[2i] and A[2i + 1] may have
a common subcomputation. And of course, in other applications the two types of sharing
may be combined.

2Here we use juxtaposition to indicate function application— notation that is common in functional
languages. Application associates to the left, so that “f x y” stands for “(f x) y”.
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3 Fine-Grained Functional Data Structure Operations

We begin by looking at two data-structuring operations traditionally found in functional
languages. In Section 3.1, we look at “Cons”, a pairing operation, and in Section 3.2, we look
at “Update”, an operation that specifies a single, incremental change in an array. We call
them “fine-grained” operations because more useful operations such as a vector sum, matrix
multiplication, etc., must be programmed in terms of a number of uses of these primitives.

3.1 Cons: Simulating Large Data Structures Using Lists

Functional languages have traditionally had a two-place “Cons” constructor as a basic data-
structuring mechanism. Given Cons, one can of course write suitable array abstractions as
a first step towards solving our examples. In this section we quickly reject this as a serious

solution.

A typical representation for arrays using Cons would be to maintain an array as a list of
elements, a matrix as a list of arrays, and so on. An abstraction for general access to an
array component may be defined as follows:

Def select A i = If (i == 0) Then hd A
Else select (tl1 A) (i-1) ;

Because of the list traversal, selection takes O(n) reads, where n is the length of the array.

Now consider a vector sum, programmed in terms of select:

Def vector_sum A B i = If (i > n) Then nil
Else cons ((select A i) + (select B i))
vector_sum A B (i+1) ;

This function performs O(n?) reads, where a corresponding FORTRAN program would per-
form only O(n) reads.

This problem can be mitigated at the expense of ignoring the select abstraction and taking
advantage of the underlying list representation so that the list-traversing overhead is not
cumulative:

Def vector_sum_2 A B = If (null A) Then nil
Else cons ((hd A) + (hd B))
vector_sum_2 (tl1 A) (t1 B) ;

This solution performs O(n) reads (though it is still inefficient because it is not tail-recursive).

Unfortunately, every new abstraction must be carefully recoded like this because combina-
tions of given abstractions are not efficient. For example,

vector_sum_2 A (vector_sum_2 B C)
creates and traverses an intermediate list unnecessarily.

Coding new abstractions efficiently is difficult because the list representation dictates a pre-
ferred order in which arrays should be constructed and traversed, an order that is extremely



difficult to circumvent. Consider one of the most basic array operations: multiplication of
two matrices A and B as described in a mathematics textbook:

Cli, j] = Ali, #] o Blx, j]

where o is the “inner-product”. But this requires a traversal of B by column, which is
very inefficient in our list representation. One may propose first to transpose B; but even a
transpose is not easy to code efficiently (we invite the reader to attempt it!), and even if it
were, we still pay the overhead of making an intermediate copy of the matrix.

Finally, the use of a “fine-grained” data-structuring primitive such as Cons places an enormous
burden on the storage allocator because of the large number and frequency of requests. Note
also that in many typical implementations where a Cons cell occupies twice the storage of a
number (for two pointers), the storage requirements for the list representation of a vector of
numbers can be more than twice the storage for the numbers alone.

For the rest of the paper, we will assume primitives that allocate contiguous storage for each
array, so that there is not much storage overhead, and so that array accesses take constant
time.

3.2 Update: A Functional Array Operator

Instead of simulating arrays using lists, one could provide array operators directly. We now
describe one such set of operators.
An array is allocated initially using the expression

array (m,n)
which returns an array whose index bounds are (m,n), and all of whose locations contain
some standard initial value (call it “ni1”).?
The expression

update A i v
returns an array that is identical to “A” except at index “i”, where it contains the value
W_.”

v”. Despite its imperative-sounding name, this is a functional operation— it returns a new
array and does not disturb A.

A component of an array is selected using the expression
Ali]

W

which returns the value at index “i” from array “A”.

For multi-dimensional arrays, we could nest 1-dimensional arrays, or we could introduce new
primitives such as

3In Id, the comma is an infix tupling operation, so that the expression “ei,...,e,” denotes a n-tuple
whose components are the values of ey, ..., e, respectively.



matrix ((m;,n;), (m;,n;))

update A (i,j) v

Ali,j]
These operations leave a lot of room for choosing the internal representation of arrays. In
order to achieve constant time access, at the expense of O(n) allocation and update, we will
only look at representations that allocate arrays as contiguous chunks of memory. Other
researchers have looked at implementations based on trees, where selection and update are
both O(log n), and where it is possible to have extensible arrays: Ackerman [1] studied

implementations based on binary trees, and Thomas [13] studied implementations based on
2-3 trees.

But none of these implementations are adequate in of themselves— they all involve far
too much unnecessary copying and unnecessary sequentialization, as we will demonstrate
in the next section. Thus, they are always considered along with some major compile-time
and/or run-time optimizations to recoup efficiency and parallelism, and these are discussed
in subsequent sections.

3.2.1 Copying and Sequentialization of Update

)

A direct implementation of the “update A i v’ operator would be:

e allocate an array with the same index bounds as “A”,

Wan

e copy all elements from “A” to the result array, except at location “i”,

(1) W

e store value “v” in location “i” of the result array,

e return the pointer to the result array.

The array selection operation would simply read a memory location at an appropriate offset
from the pointer to the array argument.

Example A will suffice to demonstrate that such a direct implementation is grossly inefficient.
Here is a solution that allocates an array, and then uses (tail-) recursion to traverse and fill
it with the appropriate contents:

A={ A =matrix ((1,m),(1,n))
In
traverse A 1 1 } ;

Def traverse A i j =
{ next_A = update A (i,j) (i+]) ;
In
If (j < n) Then traverse next_A i (j+1)
Else If (i < m) Then traverse next_A (i+1) 1
Else next_A } ;

We use the syntax



{ BINDING ... BINDING In EXPRESSION }

for blocks, which are like “letrec” blocks in other functional languages, and follow the usual
static scoping rules.

We prefer to use the following loop syntax to express the tail-recursions:

{ A =matrix ((1,m),(1,n))
In
{For i <- 1 To m Do
Next A = {For j <- 1 To n Do
Next A = update A (i,j) (i+j)
Finally A}
Finally A}

In the first iteration of the inner loop body, the “A” on the right-hand side refers to its
value in the surrounding scope (in this case, the matrix of “ni1”s allocated at the top of the
block). In each iteration of the loop, the phrase “Next A” binds the value of A for the next
iteration. The phrase “Finally A” specifies the ultimate value to be returned at the end of
the iteration.

There are two major difficulties in such a program. The first is its profligate use of storage.
It is clear that, using a direct implementation of update, we would create (mn + 1) arrays,
of which only one— the final one— is of interest. Each intermediate array carries only
incrementally more information than the previous intermediate array.

The second criticism of this program is that it over-specifies the order of the updates. In the
problem specification, each element can be computed independently of the others. However,
because of the nature of the update primitive, it is necessary for us to chain all the updates
involved in producing the final value into a linear sequence.

The necessity to sequentialize the updates also affects program clarity adversely— it is
an extra (and unnecessary) bit of detail to be considered by the programmer and reader.
Consider a solution for the wavefront problem (Example B):

{ A = matrix ((1,m),(1,n))
In
{For i <- 1 To m Do
Next A = {For j <- 1 To n Do
v=1If (i ==1) or (j == 1) Then 1
Else A[li-1, j 1
+ A[i-1,3j-1]
+ AL i ,5-11 ) ;
Next A = update A (i,j) v
Finally A}
Finally A}

It takes some careful thought to convince oneself that the above program is correct— that
the array selections in computing “v” actually read previously computed values and not
“ni1”, the original contents of A. For example, if the recurrence had been specified instead
as Aj_1;+ Ai_1,41+ A j11 (with appropriate boundary conditions), the programmer would
have to realize that the j iteration would have to be reversed to count down from n to 1. This

is a great departure from the “declarative” nature of the original recurrence specification.



3.2.2 Using Reference Counts to Reduce Storage Requirements

Several researchers have recognized that we can use reference counts to improve the efficiency
of the update operation. The idea is very simple: assume that associated with each data
structure is a number, called its “reference count” (RC), which counts the number of pointers
to it that are currently outstanding. The RC of a structure is incremented every time a copy
of its pointer is made and decremented every time its pointer is discarded. If the RC of the
argument array is 1 when the update operation executes, there can be no other references
to the array. The update operation can thus safely be performed in situ, by destructively
writing the value into the existing array and returning a pointer to the existing array. This
is of course much cheaper than allocating and filling a new array. This solution has been
studied carefully in [1]. Unfortunately, except where the program is written with an artificial
sequentialization of array accesses and updates, opportunities for this optimization occur but
rarely in a parallel machine.

We must also consider that every update operation now pays the overhead of checking the RC.
Further, the space and time behavior of the program becomes very unpredictable, because
whether or not the RC is 1 depends on the particular schedule for processes chosen by the
operating system. This can depend, for example, on the current load and configuration of
the machine.*

In [14], Hudak has proposed a technique called “abstract reference counting”, in which a
program is analyzed statically to predict the reference counts of arrays at various program
points (see also [12]). When the analysis predicts that the reference count of the array
argument to an update operation will be one, the compiler generates code to perform an
update in situ.

Hudak’s analysis was performed with respect to a sequential operational semantics, and
relies on the sequential chaining of the collection of update operations. In this regard, Hudak
reports great success in his experiments. We believe that it will be possible to predict that
in our program for Example A, the reference count for each update will indeed be one; thus
exactly one array will be allocated, and all the updates will be done destructively, resulting
in a program as efficient (and as sequential) as its FORTRAN counterpart!

Another problem is that the analysis can be sensitive to the order in which the programmer
writes his program. Consider a program to compute an array that is identical to a given
array A except that the i’th and j'th elements are exchanged:

1) { vj = A[j]

2) In { vi = A[i]

3) In { B = update A i vj

4) In update B j vi }}}
Consider a sequential operational semantics that specifies that the bindings of a block are
executed before the body of the block. Static analysis may then predict that lines 1 and 2

4Maintaining RCs at run time also raises other issues which are beyond the scope of this paper, such as
how much additional code/network-traffic there is to maintain RCs; how much contention there is at the RC
field of an array amongst all operations on that array; how atomically to increment/decrement the RC field;
how to avoid races between increment and decrement operations, etc.



have been completed before executing line 3, and so the reference count of A in line 3 should
be 1. Thus the update can be done in place. Similarly, the update in line 4 can also be
done in place. But the programmer could easily have written the program with lines 2 and
3 exchanged:

1) { vj = A[j]

3) In { B = update A i vj

2) In { vi = A[i]

4) In update B j vi }}}
The reference count of A in line 3 is no longer 1 because of the outstanding reference in line
2, and so the update in line 3 cannot be done in place. The update in line 4 can still be done
in place.

Now consider a parallel operational semantics for the language. A precise example of such
a semantics is given in Section 5 but, for now, imagine that the bindings of a block can be
executed in parallel with the body, with sequencing, if any, based only on data dependen-
cies. All four lines of the program are now initiated in parallel. Since there are no data
dependencies between lines 2 and 3, their order of execution is unpredictable. Thus, static
analysis cannot draw any definite conclusions about the reference count of A in line 3.

3.2.3 Using Subscript Analysis to Increase Parallelism

We have seen that the nature of the update primitive requires the programmer to sequen-
tialize the sequence of updates in computing an array. Reference count analysis sometimes
determines that these updates may be done in place.

If static analysis could further predict that the subscripts in the sequence of updates were
disjoint, then the updates would commute— they could then all be done in parallel. Using
such analysis on our program for Example A in Section 3.2.1, the compiler could generate
code to perform all the mn updates in parallel.

Subscript analysis has been studied extensively, most notably by Kuck et al. at the University
of Illinois [18, 22] and Kennedy at Rice University [2]. Most of this work was done in the
context of vectorizing compilers for FORTRAN. In general, this is an intractable problem,
but in the commonly occuring case where the subscripts are of the form ai 4+ b (a and b are
constants, i is a loop index), subscript analysis can reveal parallelism. However, there is a
significant cost to this analysis, both in terms of compilation speed and in terms of the effort
to develop a compiler.

Compared to FORTRAN subscript analysis, is on the one hand, easier in functional languages
due to referential transparency but, on the other hand, more difficult because of dynamic
storage allocation.

An example of a program where subscript analysis cannot extract any useful information is
a solution to Example C, the Inverse Permutation problem:

B={ B = array (1,n)
In
For i <- 1 To n Do
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Next B = update B A[i] i
Finally B } ;

In order to parallelize the loop, the compiler needs to know something about the contents
of A, such as that it contains a permutation of 1..n. This is in general too much to ask of
compile-time analysis. This situation is not artificial or unusual— it occurs all the time in
practical codes, such as in sorting algorithms that avoid copying large elements of arrays by
manipulating their indices instead, and in Monte Carlo techniques and Random Walks.

3.3 Discussion

We hope we have convinced the reader of the inadequacy of “fine-grained” functional data
structuring mechanisms such as Cons and Update, especially in a parallel environment. (Some
of these problems are solved using the “make array” primitive discussed in the next section.)

Writing programs directly in terms of these primitives does not result in very perspicuous
programs— Cons requires the programmer continuously to keep in mind the list representa-
tion, and update requires the programmer to devise a sequential chaining of more abstract
operations. In both cases, it is advisable first to program some higher-level abstractions and
subsequently to use those abstractions.

Both operators normally involve substantial unnecessary copying of intermediate data struc-
tures and substantial unnecessary sequentialization. It was possible to avoid these overheads
only when the compiler could be assured that a) reference counts were one, and that b) the
subscripts in a chain of updates were disjoint.> Automatic detection of these properties does
not seem tractable in general.

There is a disquieting analogy with FORTRAN here. Our functional operators force over-
specification of a problem solution, and static analysis attempts to relax unnecessary con-
straints. Parallelizing FORTRAN compilers face the same problem, albeit for a different
reason (side effects).

®Originally, an I-structure was just a functional data structure with these two properties [7], and not a
separate kind of object with its own operations.
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4 Make Array: A Bulk Functional Data Structure Op-
eration

Many researchers (notably Keller) have proposed a “bulk” array-definition primitive that
treats an array as a “cache” for a function over a rectangular subset of its domain [17, §].
For example, the expression

make_array (m,n) f

where (m,n) is a pair (2-tuple) of integers and £ is a function, returns an array whose index
bounds are (m,n), and whose i’th component contains (£ i). We will often refer to £ as the
“filling function”. One can think of the array as a cache for £ because for i within bounds,
A[i] returns the same value as (£ i), but (we hope) at significantly lower cost.

Higher dimensional arrays may be constructed either by nesting arrays, or by generalizing
the primitive. Thus,

make_matrix ((m+4,n:),(mj,nj)) £

produces a matrix where the (i,j)’th component contains £ (i,j). The first argument to
make matrix is a pair whose components are pairs of integers; it specifies the index bounds of
the matrix.

4.1 Example A

We can now readily see the solution for Example A:

Def f (i,j) =1 + j;
A = make_matrix ((1,m),(1,n)) £

which is concise and elegant and does not pose any serious problem for an efficient, parallel
implementation.

4.2 Strictness of make array

Before moving on to the remaining examples, it is worth noting that make array need not be
strict, i.e., the array may be “returned” before any of the component values have been filled
in.

An eager implementation (such as a dataflow implementation) may behave as follows: the
bounds expression is evaluated first and storage of the appropriate size allocated. A pointer
to the array can now be returned immediately as the result of the make array expression.
Meanwhile, n independent processes are initiated, computing (f 1), ..., (f n) respectively—
each process, on completion, writes into the appropriate location in the array. Some syn-
chronization mechanism is necessary at each array location so that a consumer that tries
to read some A[i] while it is still empty is made to wait until the corresponding (£ i) has
completed. One way to achieve this synchronization is to use I-structure storage, where each

12



location has “presence bits” to indicate whether the value is present or absent. I-structure
storage is discussed in more detail in Section 5.

Another way to achieve this synchronization is by lazy evaluation: the bounds expression
is evaluated first and storage of the appropriate size is allocated. Each location A[i] is
then loaded with the suspension for (f i) and the pointer to the array is then returned.
A subsequent attempt to read A[i] will force evaluation of the suspension, which is then
overwritten by the value. In general, a fundamental activity of lazy evaluators— testing an
expression to check if it is still a suspension— is really a synchronization test and also needs
presence bits, although they are not usually referred to with that terminology.

This kind of nonstrictness permits a “pipelined” parallelism in that the consumer of an array
can begin work on parts of the array while the producer of the array is still working on other
parts. Of course, even the Cons and Update operators of Section 3 could benefit from this
type of nonstrictness.

4.3 Example B (Wavefront)

A straightforward solution to the wavefront problem is:

Def f (i,j) = If (i == 1) or (j == 1) Then 1
Else f (i-1, j)
+ £ (i-1, j-1)
+f (i, j-10 ;

A = make_matrix ((1,m),(1,n)) f ;

But this is extremely inefficient because “f (i,j)” is evaluated repeatedly for each (i,3),
not only to compute the (i,j)’th component, but also during the computation of every
component to its right and below. (This is the typical exponential behavior of a recursively
defined Fibonacci function.)

The trick is to recognize that the array is a “cache” or “memo” for the function, and to
use the array itself to access already-computed values. This can be done with a recursive
definition for A:
Def f X (i,j) = If (4 == 1) or (j == 1) Then 1
Else X[i-1, j ]
+ X[i-1, j-1]
+ X[ i, j-11 ;

g=f A ;

A = make_matrix ((1,m),(1,n)) g;
Here, the function f is a curried function of two arguments, a matrix and a pair of integers.
By applying it to A, g becomes a function on a pair of integers, which is a suitable argument
for make matrix. The function g, in defining A, carries a reference to A itself, so that the
computation of a component of A has access to other components of A.

In order for this to achieve the desired caching behavior, the language implementation must
handle this correctly, i.e., the A used in g must be the same A produced by make matrix and
not a new copy of the definition of A.

13



Note that in recurrences like this, it will be impossible in general to predict statically in what
order the components must be filled to satisfy the dependencies, and so a compiler cannot
always “preschedule” the computation of the components of an array. Thus, any implemen-
tation necessarily must use some of the dynamic synchronization techniques mentioned in
Section 4.2. This is true even for sequential implementations (lazy evaluation is one way to
achieve this dynamic synchronization and scheduling).

Assuming the implementation handles such recurrences properly, the main inefficiency that
remains is that the If-Then-Else is executed at every location. This problem arises even
when there are no recurrences. In scientific codes, it is quite common to build a matrix with
different filling functions for different regions, e.g., one function for boundary conditions and
another for the interior. Even though this structure is known statically, make matrix forces
the use of a single filling function that, by means of a conditional, dynamically selects the
appropriate function at each index. Compare this with the FORTRAN solution that would
merely use separate loops to fill separate regions.

4.4 Example C (Inverse Permutation)

Unfortunately, make_array does not do so well on Example C. Recall that B contains a per-
mutation of its indices, and we need to compute A, the inverse permutation.

Def find B i j = If (B[j] == i) Then j
Else find B i (j+1) ;

Def g Bi=find Bil ;

A = make_array (1,n) (g B) ;

The problem is that each (g B i) that is responsible for filling in the i’th location of A needs

to search B for the location that contains i, and this search must be linear. Thus, the cost

of the program is O(n?).

It is possible to use a slightly different array primitive to address this problem. Consider
make_array_jv (1,u) f

where each (£ i) returns (j,v), so that A[j] = v, i.e., the filling function £ is now responsible

for computing not only a component value, but also its index.® Example C may now be
written:

Def g B i = B[il,i ;
A = make_array_jv (1,n) (g B) ;

Of course, if B does not contain a permutation of 1..n, a run-time error must be detected—
either two (g B i)’s will attempt to write the same location, or some (g B i) will attempt to
write out of bounds.

6We first heard this solution independently from David Turner and Simon Peyton Jones, in a slightly
different form— instead of having a filling function f, they proposed an association-list of index-and-value
pairs. This solution is also mentioned by Wadler in [28].
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Note that this new primitive, make array_jv, no longer has the simple and elegant character-
ization of make array as being a “cache” for the filling function— the relation between the
array and the filling function is no longer straightforward. Further, when make array jv is
used for programs without index computations, such as Examples A and B, the compiler
must now explicitly establish that the indices computed by the filling function form a legal
permutation.

4.5 Example D (Shared Computation)

A straightforward attempt to solve the shared computation problem is:
Def fh i =f (h i) ;
Def ghi=g (h i) ;

A
B

make_array (1,n) fh ;
make_array (1,n) gh ;

This program, of course, does not share any computation— (h i) is repeated for each i for
A and for B.

One possible way out is first to cache the values of (nh i) in an array C:

C = make_array (1,n) h ;

Def fh i = £ C[i] ;
Def gh i = g C[i] ;

A = make_array (1,n) fh ;
B = make_array (1,n) gh ;

The drawback is the overhead of allocating, writing, reading and deallocating the interme-
diate array c.

To regain the sharing, one could imagine the following scenario performed by an automatic
program transformer. The two make array’s are expanded into, say, two loops. Recognizing
that the loops have the same index bounds, they are fused into a single loop. Within the
resulting loop, there will be two occurrences of (h i); this common subexpression can then
be eliminated.

We believe that this scenario is overly optimistic. It is very easy to modify the example very
slightly and come up with something for which an automatic program transformer would
have no chance at all— for example, by changing or displacing the index bounds of one array,
or by having a sharing relationship that is not one-to-one, etc.

4.6 Discussion
Any functional data-structuring constructor is a complete specification of a value, i.e., it
includes the specification of the components. For example, “Cons el e2” specifies not only

that the result is a cons-cell, but also specifies that its components are the values of et and
e2.
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For large data structures such as arrays, it is obviously not feasible in general to enumerate
expressions for all the components as we do with Cons. Thus, their functional constructors
must specify a regular way to generate the components. Make array takes a “filling” parameter
f, and it sets up n independent computations, with the ¢2’th computation responsible for
computing and filling the ¢’th location.

We saw three problems with this fixed control structure. The wavefront example showed that
when the filling function is different for different regions of the array, they have to be selected
dynamically using a conditional, even when the regions are known statically. In the inverse
permutation problem, the fixed control struture was totally different from the desired control
structure. Finally, there was no convenient way to express shared computation between the
filling computations for two data structures.

The variant make_array_jv achieved some flexibility by leaving it up to each of the ¢ computa-
tions to decide which index j it was responsible for. However, it still did not address the issue
of shared computations, which could only be performed with the overhead of constructing
intermediate arrays or lists. In recent correspondence with us, Phil Wadler has conjectured
that, using the version of make array_jv that uses association lists of index-and-value pairs
together with his “listless transformer” [27], these problems may indeed be solved without
any overhead of intermediate lists. We have yet to investigate the viability of this approach.

All the examples we have seen are quite small and simple; even so, we saw that the first,
straightforward solution that came to mind was in many cases quite unacceptable, and that
the programmer would have to think twice to achieve any efficiency at all. The complications
that were introduced to regain efficiency had nothing to do with improving the algorithms—
they were introduced to get around language limitations.

We are thus pessimistic about relying on a fixed set of functional data structuring primi-
tives. We have encountered situations where the problems illustrated above do not occur in
isolation— recursive definitions are combined with shared computations across indices and
across arrays. In these situations, writing efficient programs using functional array prim-
itives has proven to be very difficult, and is almost invariably at the expense of program
clarity. Perhaps, with so many researchers currently looking at this problem, new functional
data-structuring primitives will emerge that will allow us to revise our opinion.
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5 I-Structures

In the preceding discussion, we saw that the source of inefficiency is the fact that the various
functional primitives impose too rigid a control structure on the computations responsible
for filling in the components of the data structure. Imperative languages do not suffer from
this drawback, because the allocation of a data structure (variable declaration) is decoupled
from the filling-in of that data structure (assignment). But imperative languages, with
unrestricted assignments, complicate parallelism because of timing and determinacy issues.
[-structures are an attempt to regain that flexibility without losing determinacy.

In the Section 5.1 we present the operations to create and manipulate I-structures, and in
Section 5.2, we show how to code the programming examples using [-structures. In these
sections, we rely on informal and intuitive explanations concerning parallelism and efficiency.

Finally, in Section 5.3 we make these explanations precise by presenting an operational
semantics for a kernel language with I-structures, using a confluent set of rewrite rules. This
section may be skipped on a first reading; however, there are several novel features about the
rewrite rules, not usually found elsewhere in the functional languages literature. Even for
the functional subset of Id, they capture precisely the idea of parallel, dataflow execution,
which is parallel and normalizing; they describe precisely what computations are shared,
an issue that is often left unspecified, and, finally, they are invaluable in developing one’s
intuitions about the read-write synchronization of parallel data structures, both functional
and otherwise.

5.1 I-structure operations

One can think of an I-structure as a special kind of array, each of whose components may
be written no more than once. To augment a functional language with I-structures, we
introduce three new constructs.

5.1.1 Allocation

An I-structure is allocated by the expression

I_array (m,n)

which allocates and returns an “empty” array whose index bounds are (m,n). I-structures are
first-class values, and they can contain other I[-structures, functions, etc. We can simulate
multi-dimensional arrays by nesting I-structures, but for efficiency reasons Id also provides
primitives for directly constructing multidimensional [-structures:

I_matrix ((m;,n;), (mj,n;))

and so on.
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5.1.2 Assignments and Constraints

A given component of an I-structure A may be assigned (written) no more than once, using
a “constraint statement”:

A[i]l = v

Operationally, one thinks of this as assigning, or storing the value v into the i’th location
of array A. It is a run-time error to write more than once into any I-structure location— the
entire program is considered to be in error.

The assignment statement is only the simplest form of a constraint statement. A loop
containing constraint statements and no “Finally e” clause is itself a constraint statement.
A block with no “In” clause is a constraint statement. A procedure “f” may have a body
that is a constraint statement; it is called using the constraint statement:

Call f x

In general, constraint statements appear intermixed with bindings in a block or loop-body.

5.1.3 Selection

A component of an I-structure A may be selected (read) using the expression:
A[il

This expression returns a value only after the location becomes nonempty, i.e., after some
other part of the program has assigned the value.

There is no test for emptiness of an I-structure location. These restrictions— write-once,
deferred reads, and no test for emptiness— ensure that the language remains determinate;
there are no read-write races. Thus, the programmer need not be concerned with the timing
of a read relative to a write. All reads of a location return a single, consistent value, albeit
after an arbitrary delay.

5.1.4 Discussion

Semantically, one can think of each location in an I-structure as containing a logical term.
Initially, the term is just a logic variable— it is completely unconstrained. Assignment to
that location can be viewed as a refinement of, or constraint on the term at that location.
This is what motivates our calling it a “constraint statement”. The single-assignment rule is
sufficient to preclude inconsistent instantiations of the initial logic variable. Of course, the
single-assignment rule is not a necessary condition to avoid inconsistent instantiations. We
could take the view that assignment is really unification, and then multiple writes would be
safe so long as the values unify. Id does not currently take this view, for efficiency reasons.

Some machine-level intuition: Conceptually, I-structures reside in an “I-structure store”.
When an allocation request arrives, an array is allocated in free space, and a pointer to this
array is returned. Every location in the array has an extra bit that designates it as being
“empty”.
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An I-structure selection expression becomes an “I-fetch” request to the I-structure store.
Every request is accompanied by a “tag”, which can be viewed as the name of the contin-
uation that expects the result. The controller for the I-structure store checks the “empty”
bit at that location. If it is not empty, the value is read and sent to the continuation. If the
location is still empty, the controller simply queues the tag at that location.

An [-structure assignment statement becomes an “I-store” request to the I-structure store.
When such a request arrives the controller for the I-structure store checks the “empty” bit
at that location. If it is empty, the value is stored there, the bit is toggled to “nonempty”,
and if any tags are queued at that location, the value is also sent to all those continuations.
If the location is not empty, the controller generates a run-time error.

5.2 The Programming Examples

Let us now see how our programming examples are expressed in Id with I-structures.

5.2.1 Example A

The first example is straightforward:

{ A = I_matrix ((1,m),(1,n)) ;
{For i <- 1 To m Do
{For j <~ 1 To n Do
Ali,jl1 =1 + j }}
In
A}

Recall that the loop is a parallel construct, so, in the above program, the loop bodies can be
executed in any order— sequentially forwards, as in FORTRAN, or all in parallel, or even
sequentially backwards!

The matrix A may be returned as the value of the block as soon as it is allocated. Meanwhile,
m X n loop bodies execute in parallel, each filling in one location in A. Any consumer that

tries to read A[i,j] will block until the value has been stored by the corresponding loop
body.

5.2.2 Example B (Wavefront)

{ A = I_matrix ((1,m),(1,n)) ;
{For i <- 1 To m Do

Afi, 11 =1 1%} ;
{For j <- 2 To n Do
Al1,j1 =11}
{For i <- 2 To m Do

{For j <- 2 To n Do
Ali,j1 = Ali-1,3]1 + A[i-1,j-11 + A[i,j-11 }}
In
Al
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The matrix A may be returned as the value of the expression as soon as it is allocated.
Meanwhile, all the loop bodies are initiated in parallel, but some will be delayed until the
loop bodies for elements to their left and top complete. Thus a “wavefront” of processes fills
the matrix.

Note that we do not pay the overhead of executing an If-Then-Else expression at each index,
as in the functional solution.

It is worth emphasizing again that loops are parallel constructs. In the above example, it
makes no difference if we reverse the index sequences:

{For i <- m Downto 2 Do
{For i <- n Downto 2 Do ...}}

The data dependencies being the same, the order of execution would be the same. This is
certainly not the case in imperative languages such as FORTRAN.

5.2.3 Example C (Inverse Permutation)

{ A =TI_array (1,n) ;
{For i <- 1 To n Do
A[B[i]] =1 }
In
A}

The array A may be returned as the value of the expression as soon as it is allocated.
Meanwhile, all the loop bodies execute in parallel, each filling in one location. If B does not
contain a permutation of 1..n, then a run-time error will arise, either because two processes
tried to assign to the same location or because some process tried to write out of bounds.

5.2.4 Example D (Shared Computation)

{ A =TI_array (1,n) ;
B = I_array (1,n) ;
{For i <- 1 To n Do

z=hi;
Ali] = £ z;
Blil] =gz }
In
A,B }

The arrays A and B may be returned as the value of the expression as soon as they are
allocated. Meanwhile, all the loop bodies execute in parallel, each filling in two locations,
one in A and the other in B. In each loop body, the computation of (h i) is performed only
once.

5.3 Operational Semantics for a Kernel Language with I-structures

In this section we make the parallelism in the dataflow execution of Id more precise. First,
some historical notes. For a long time, the parallelism of Id was described only in terms
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of dataflow graphs, the machine language of the dataflow machine. In [6], we made a
preliminary attempt at describing it more abstractly, in terms of a set of rewrite rules. This
was refined by Traub in [26], and subsequently by Ariola and Arvind in [3]. For a precise
formalization and proofs of important properties such as confluence, the interested reader
is referred to the last reference. Our description here borrows heavily from that reference,
sacrificing much detail and omitting all proofs, in the interest of clarity.

The operational semantics are given as an Abstract Reduction System, i.e., a set of terms
and a binary reduction relation that describes how to transform one term into another. The
general form of a rewrite rule is:

E1 X [SSl — E2 X [SSQ

where E € Expression and 1SS € I-Structure Stores. We begin by describing these syntactic
categories.

5.3.1 Syntax of the Kernel Language, and its relation to Id

To simplify the exposition, we consider only a kernel language whose syntax is described
in Figure 1. The translation of Id programs into the kernel language should be mostly
self-evident; a few issues are discussed later in this section.

A program is a list of user-defined procedures and a main expression. The definitions may
be recursive and mutually recursive.

The definitions in a Program are static, i.e., the definitions are not themselves part of the
term being rewritten, though each definition represents an instance of the family of rewrite
rules for the apply operator. The Main expression is only the initial expression in the term
being rewritten. Expressions in the static part of the program, i.e., the right-hand sides
of definitions and the main expression, are drawn only from Initial Terms. The syntactic
category Runtime Terms is used to describe additional terms of interest and terms that may
come into existence only during execution.

Each constant has an arity n (numerals, boolean constants, etc., are all considered to be
constants of arity 0). A constant of arity n > 0 is always applied to n arguments, i.e.,
constants are never curried. Currying of user-defined procedures is simulated by the apply
operator which is a constant of arity 2. For clarity, we will often omit the arity superscript,
and we will sometimes use infix notation for well-known primitives; thus, “x+y” instead of
“plus x y”. We assume that procedure identifiers ( Proclds) are distinct from other identifiers.

In the kernel language, all subexpressions are named by identifiers. Thus, the Id expression
“23+34x45” is written as follows in the kernel language:

{ x=plus? 23 y ;
y = times? 34 45
In
x }
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Programs:

Program = Definition ; --- ; Definition ; Main
Definition = Def Procld Identifier - -- Identifier = Expression (n>0)
n
Initial Terms:
Procld = Identifier
Main = Block
Ezpression = SimpleEzpr
| Constant™ SimpleExpr - - - SimpleExpr (n > 0)
| Block
SimpleErpr ::= Constant® | Identifier | Procld
Constant® = O| 1 |---| true |false| nil |---
Constant* = mk_closure| hd |tl |---
Constant? = plus | minus | cons |
allocate |I_select|
apply |...
Constant’ = cond | ---
Block = { Statement ;
Statement
In
SimpleEzpr }
Statement = Binding | Command
Binding = Identifier = Expression
Command = null |
I_set SimpleEzpr SimpleErpr SimpleErpr
Runtime Terms:
Constant* = I_fetch!
Command = I_store Loc SimpleFxpr
Value = Constant® | Closure | I-structure
Closure = <closure Procld Loc--- Loc > (0 < m < n, the # of args for Procld)
m
I-structure = <I.structure [ u Loc--- Loc > (m=u—1+1)
[

Loc
1S5S

m
10| 1, |...
empty |
(Loc, Value) , ..., (Loc, Value) |
inconsistent

Figure 1: Syntax of Kernel Language
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Thus, kernel expressions are more tedious to write than their Id counterparts, but the rewrite
rules are simplified considerably.

Blocks are like “letrec” blocks, i.e., the bindings may be recursive and mutually recursive;
they follow the usual static scoping rules and the order of the bindings is not significant. For
simplicity, bindings in blocks do not have formal parameters. There is no loss of expressive
power— we assume that internal procedure definitions can be compiled out using techniques
such as lambda-lifting [16].

In an Id conditional expression:
ifefyg

nothing is executed in f or g until e is evaluated. Subsequently, exactly one of the ex-
pressions f and g is evaluated. Unfortunately, such contextual restrictions on rewrite rules
usually complicate reasoning about a reduction system. Instead, we assume that the above
conditional expression is first expressed in Id like this:

{Def Fx=Ff;
Def G x =g ;
H=cond e F G

In
HO}

where cond is a new primitive that simply returns its second or third argument depending on
the boolean value of its first argument. The formal parameters x and the actual parameter 0
are just dummy arguments. This form can then be translated as usual to the kernel language.
The same effect is achieved— exactly one of f and g is evaluated— without any contextual
restrictions on the rewrite rules.

As a step towards translation into the kernel language, Id I-structure constructs are trans-
formed as shown below.

I_array epounds —> { b = epounds ;
by = I_select b 1 ;
by = I_select b 2 ;
a = allocate by bo
In
a }
eq Le;] e { a=e¢e; ;
i= €;
In
I select a i }
ealeil = ey = a=e ;
i=e€ ;
V =€y
Iset aiv;

In Id, a block or a loop may be used as a constraint statement, in which case it does not
return any value. It can always be converted into an expression returning a dummy value
that is subsequently discarded by binding it to an unused identifier. Similarly, the statement
Call £ x can be converted into a binding a = £ x where a is unused. Loop expressions can
then be transformed to tail-recursive procedures in the standard way.
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5.3.2 Runtime Expressions, Values and the I-structure store

Execution begins with the term:
Main X empty

i.e., the main expression of the program (drawn from Initial Terms) and an empty I-structure
store. As the reduction proceeds, the expression may be transformed to contain runtime
terms, and the I-structure store grows with new location-value pairs. We use [ and v (possibly
with subscripts) as meta-variables for locations and values, respectively. The Value category
corresponds exactly to “tokens” in the dataflow machine.

We assume an infinite supply of new locations. Location names are global, i.e., they do not
follow scoping rules due to Blocks. The ordering of locations in the store is immaterial. In
the rewrite rules, we use the notation:

ISS[(l,v)]

both as a pattern to match any store containing an (7,v) pair and as a constructor to augment
a store 1SS with a new pair (,v).

5.3.3 Canonicalization

To simplify the exposition, we assume that rewrites are performed only on canonical terms.
Thus, the overall reduction process can be viewed as repeatedly performing a rewrite followed
by a canonicalization. There are three steps in canonicalization.

Block Flattening

Nested blocks can be flattened, whether the nested block is in the bindings or in the “In”
expression:

{ Bl )
B, ; { B, ;
By ;
x= { C1;
Cy Ci
ol
In
R} x = R ;
H PR
B, B, ;
In Di ;
{ Dl ’ } DIZ ’
D> ;
In
In S
S}
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The “primed” terms on the right indicate suitable a-renaming of identifiers to avoid name
clashes.” As will become evident later, an inner block may have zero bindings to be lifted
into the outer block.

Identifier Substitution and Binding Erasure

The substitution rules for identifiers are designed very carefully to model the sharing of
computations precisely:

1. If x and y are distinct identifiers and there is a binding “z = y” in a term, then we can
eliminate this binding from the term after replacing all uses of x with .

Y

2. If x is an identifier and v a value, and there is a binding “z = v” in a term, then we
can eliminate this binding from the term after replacing all uses of x with v.

Of course, in the first rule, one must be cognizant of scoping due to blocks to avoid the
inadvertant capture of y.

The major deviation from substitution rules for the lambda calculus, say, is that x must
be bound to a Value and not to an arbitrary expression before it can be substituted. This
ensures that unevaluated expressions are never duplicated, i.e., they are evaluated exactly
once.

Null erasure

All null statements in blocks can be eliminated.

5.3.4 Rewrite Rules

The general notation for a rewrite rule is:

M[pl] X [SSl — M[pg] X [SSQ

where M/[p] is the main program expression and p is a pattern that identifies any matching
subexpression e, and 1SS is the [-structure store. The subexpression e is called a redez, or
reducible expression.

For most rewrite rules, the I-structure store is irrelevant; these rules are written more suc-
cinctly:

p1 — P2

"However, recall that location names are not identifiers, so they are never renamed.
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with the understanding that they really abbreviate the full form above.

There may be more than one redex in the program term. The dataflow rule requires all such
redexes to be reduced simultaneously. Of course, in a real implementation only a subset of
redexes can be rewritten at any step. We discuss this issue in more detail in Section 5.3.7.

6 rules:

We assume suitable § rules for all the primitive functions. For example:

m+n — m-+n (m and n numerals)

Conditionals:

cond true f g — f
cond false f g — g

User-defined procedures: Closures, Partial and Full Applications:
Suppose we had the following user-defined procedure of n-arguments:
Def f &1 -+ Ty = Epoay ;

Initially, f appears in the program as an argument to mk_closure, whose rewrite rule is shown
below:

‘ mk_closure f — <closure f>‘ (f € Procld)

The closure is then applied to arguments, one at a time. However, unless the argument is
its “last” argument, we simply create a new closure, allocating a new location to hold the
value of the argument:

apply <closure f l; --- lj_1> e; — { I_store [; ¢; j<n
In 7

new lj

<closure f Iy --- lj_1 l;> }

Note, however, that the new closure is ready to be used as a value immediately, even if
the argument e; is not yet a value. For example, the closure may now be applied to more
arguments. However, the rules ensure that e; is evaluated exactly once.

It is only when a closure is applied to the “last” argument expression that we invoke the
procedure body, i.e., rewrite using the procedure definition:

apply <closure f Iy --- l,—1> €, — { x; = I_fetch I; ;

Tp_1 = I_fetch l,_1 ;
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Again, note the parallel dataflow behavior. The body of the procedure becomes ready for
evaluation even though all the argument expressions may still be unevaluated. However, the
substitution rules for identifiers and for I_fetch ensure that the arguments are not substituted
into the body until they have reduced to values. Further, each argument is evaluated exactly
once, even if it is used many times in the procedure.

I-structure Operations
Allocation:
m, n integer values,

‘ allocate m n — <I_structure m n l, lpy1 - lh—1 1> m<n,
lyp -1, new

Iset’s and I_select’s, after address computations, become I_fetch’es and I_store’s against
specific locations:

‘ I_set <I_structure m n ! l l,> 1 e — Istorel; e ‘ i a value,
- E m i n” b E i m<i<n
; i a value
I_select <I_structure m n l, - l; -+ > ¢ — I_fetch [; - 7
‘ m i n” L i m<i<n

Note that the I-structure and index arguments must be values, but the third argument (e)
to I_set need not be a value. There are various ways to handle out-of-bounds errors, but we
do not address them here.

An I_store augments the I-structure store with a new location-value pair, provided that the
store does not already contain the location. If it does already contain the location, the entire
[-structure store goes to an inconsistent state:

| M[I_store | v] x ISS — M[mulll x ISS[(/,»)]1 | A any (I,v') in ISS

‘ M[I_store [ v] x ISS[(l,v')] — M[null] X inconsistent ‘

An I_fetch against a location can be reduced only after a value is present in that location:

M[I_fetch [] x ISS[{,v)] — M[v]l x ISS[({,v)]

Functional Data Structure Operations

These can be expressed in terms of I-structure operations. Construction:

cons e; ea — { c = allocate 1 2 ;
Iset c 1 e ;
I.set ¢ 2 es

¢}

In
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and selection:

hd e — 1I_select el
tl e — I_select e 2

We include these as rewrite rules only because it then allows us to define a very simple
syntactic criterion to limit user-programs to functional programs, i.e., by omitting Commands
from Initial Terms while keeping them in Runtime Terms. But for this reason, we could treat
the above rewrite rules as ordinary definitions supplied by the user, or as a compile-time
transformation.

5.3.5 An Example

Let us look at a small example that demonstrates the nonstrict behavior of data structures.
The following Id expression:
{ p = cons 23 p
In
hd p }

defines p to be an “infinite” list of 23’s, and returns only the first element of it. Below, we
show a possible reduction. At each step, we enclose the chosen redex(es) in a box. Many
steps, especially canonicalization steps, are omitted for brevity:

{p=|cons 23 p| ;
r =|hd p

In
r } X empty

= |allocate 1 2] ;

c
I_set ¢ 123 ;
I_set c 2p;
p
r

c;
I_select p 1

In
r } X empty

{|I_set <I-structure 1 2 L1 L2> 1 23] ;
I_set <I-structure 1 2 L1 L2> 2 <I-structure 1 2 L1 L2>] ;

r = |I_select <I-structure 1 2 L1 L2> 1|
In
r } X empty

{ |I_store L1 23| ;

I_store L2 <I-structure 1 2 L1 L2>] ;
r = I_fetch L1

In
r } X empty
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{r =|I_fetch L1

In
r } x (L1,23)(L2,<I-structure 1 2 L1 L2>)

{

In
23} x (L1,23),(L2,<I-structure 1 2 L1 L2>)

In the final state, there are no remaining statements in the block, and the result value is 23.
The final I-structure store contains a self-referential structure.

5.3.6 Termination and Answers

The reduction terminates as soon as we reach a state N x ISS where either 1SS = inconsistent
or N is in normal form, i.e., it contains no redexes. It is useful to identify the following four
categories of termination:

e Proper termination with answer v:
{Inwv } x ISS

where v € Value, ISS 75 inconsistent.
e Improper termination with inconsistent I-structure store:

N X inconsistent

Note that N does not have to be in normal form. Further,

VY M,N M x inconsistent = N X inconsistent
e Improper termination with answer v:
{s1; ... 8, Inv} x ISS
where k > 1, v € Value, ISS # inconsistent.
e Improper termination with deadlock:
{s1; ... ; sg,. Ine} x ISS
where k > 1, ¢ £ Value, ISS # inconsistent.

The last two situations arise only if there are unreduced I_fetch expressions in the normal
form. Here are three pathological Id programs with these behaviors, respectively:

{ a=1I_array (1,1); { a=1I_array (1,2); {x=y+1;
x = a[1] al1] = a[2] ; y = x+1;
In al2] = a[1] ; In
23 } In 23 }
a}

In our dataflow implementation of Id, we print an answer as soon as it is available. When
the program subsequently terminates, additional information about improper termination is
printed, if necessary.
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5.3.7 Discussion of Kernel Language and Rewrite rules

Reduction Strategies

The rewrite rules do not themselves specify any strategy for choosing redexes. Our im-
plementation uses a “parallel dataflow strategy”, i.e., it attempts to evaluate all redexes
concurrently. Of course, because of limited resources, only some subset of available redexes
will be reduced at each step. A poor choice of redexes may place severe demands on the
resources of the machine. For example, an array may be allocated long before it is actually
used, thus utilizing storage inefficiently. We have studied various approaches to controlling
the unfolding of a parallel computation so that it uses resources efficiently [9, 11, 10]. These
issues are relevant to all parallel languages, but the details are beyond the scope of this
paper.

In our rewrite rules, no redex is ever duplicated or discarded. Thus, the number of reductions
performed is independent of the reduction strategy. As a consequence, the only expressions
in an Id program that are not evaluated are those that are not selected by a conditional.
Thus, consider the following two Id programs:

{ a=1I_array (1,1) ; {a=1I_array (1,1) ;
x =9 al[1] = 23 In all1] } ;
y =9{ al1] = 24 In a[2] } ;
z = 1if p z = if p
then { a[1] = 23 In a[1] } then x
else { al1] = 24 In al1] } else y
In In
z } z }

The program on the left will terminate properly with value 23 or 24; only one of the two
array assignments will be performed. The program on the right will always terminate im-
properly with an inconsistent store because both array assignments will always be performed.
In our experience, this has never been a complication— it is not much different from the
way in which we control unbounded recursion in ordinary programming languages using
conditionals.

The functional subset and its relation to lazy languages

If we wish to limit ourselves to purely functional programs, the following syntactic criterion
is sufficient: there should be no Commands in the initial program. It is also reasonable
to disallow allocate expressions as they are quite useless without Commands. Note that
Commands may still appear during the execution of cons and partial applications; we disallow
them only in initial programs. However, it is easy to prove that under these conditions, it
is impossible for two I_stores to go to the same location and, therefore, it is impossible to
produce an inconsistent store.

Let us reexamine the issue of termination for the functional subset. Consider the following
Id program:

Def diverge x = diverge x ;
Def £ y =5 ;

f (diverge 1)
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This program will not terminate under our rewrite rules because we never discard “unnec-
essary” expressions like “diverge 1”. The reason is that in general, with I-structures, it
may not be safe to do so— any expression may ultimately make the store inconsistent, thus
changing the answer. For confluence, therefore, we cannot discard any expression.

If we restrict ourselves to functional programs, however, this danger of inconsistency cannot
arise, and so it is safe to add the following rewrite rule (let us call it the discard rule):

{ s1; — { v € Values
In
sn v}
In
v}

Note that this is the only rule that can discard a redex. Further, no rule ever duplicates
a redex. Thus, without the discard rule, the number of reductions performed (and, thus,
the termination behavior) is independent of the reduction strategy, so that a normal-order
strategy would not be particularly useful. With the discard rule, however, the reduction
strategy does affect the number of reductions performed and can affect termination. Because
our rewrite rules also capture the sharing of expressions, they would, under normal-order,
accurately describe lazy evaluation and graph-reduction machines [23].

Note, however, that with the discard rule, the parallel dataflow strategy will produce exactly
the same termination behavior that normal-order would, even though it may perform some
extra, unnecessary reductions. Thus functional Id, even though it does not use lazy evalua-
tion, implements exactly the same nonstrict semantics that normal-order does, i.e., functions
can return values even if their arguments do not terminate. To our knowledge, Id is unique
in this respect— every other functional language that implements nonstrict semantics does
so using lazy evaluation.®

Confluence

The confluence of the reduction system has been proved in [3]. Note that confluence holds for
the entire kernel language, including all [-structure operations, and not just for a functional
subset.

8Perhaps for this reason, nonstrictness is often incorrectly equated with laziness in the literature.
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6 Using I-structures to Implement Array Abstractions

From the point of view of programming methodology, it is usually desirable for the pro-
grammer first to implement higher-level array abstractions and subsequently to use those
abstractions.

6.1 Functional Array Abstractions

As a first example, we can implement the functional make_array primitive:

Def make_array (m,n) f = { A = array (m,n) ;
{For i <- m To n Do
Alil = £ i }
In
Al

Note that there is all the parallelism we need in this implementation. The array A can be
returned as soon as it is allocated. Meanwhile, all the loop bodies execute in parallel, each
filling in one component. Any consumer that attempts to read a component will get the
value as soon as it is filled.

Similarly, here is an efficient, parallel implementation for make matrix:
Def make_matrix ((mi,ni),(mj,nj)) f =
{ A = matrix ((mi,ni), (mj,nj)) ;
{For i <- mi To ni Do
{For j <- mj To nj Do
Ali,31 = £ (4,3 }}
In
A}

A functional vector sum:

Def map2 f A B = { m,n = bounds A ;
C = array (m,n) ;
{For i <- m To n Do
C[i] = £ A[i] B[i] }
In
C1lt;

vector_sum = map2 (+) ;

Here, we first define a more general abstraction map2 for applying a binary function £ to
each pair of elements taken itemwise from two vectors, and then define vector_sum as the
partial application of map2 to the specific binary function “+”. Again, the solution has all
the parallelism we need. The array c is returned as soon as it is allocated. Meanwhile,
independent processes execute in parallel, each computing one sum and storing it in one

location in C.

As another demonstration of the usefulness of programming with abstractions like map2,
consider a function to add two vectors of vectors (i.e., a vector sum where the components
are not numbers, but vectors themselves):

32



vector_of_vectors_sum = map2 vector_sum ;

An implementation of the functional make_array_jv primitive:

Def make_array_jv (m,n) f = { A = array (m,n) ;
{For i <- 1 To u Do
jov =1 1i;
Afjl =v }
In
A}

A primitive to make two arrays in parallel:

Def make_two_arrays (m,n) f = { A = array (m,n) ;
B = array (m,n) ;

{For i <- m To n Do
va,vb = f i ;

Ali] = va ;
B[i] = vb }
In
A,B } ;

We leave it as an exercise for the reader to use make_two_arrays to produce an elegant solution
to the shared computation problem (Example D).

It is clear that it is straightforward for the programmer to use I-structures to implement any
desired functional array abstractions— the solutions are perspicuous, efficient, and there is
no loss of parallelism.

It is likely that even if abstractions like make_array are supplied as primitives, I-structures are
a useful implementation mechanism for the compiler. Supplying such abstractions as prim-
itives is useful for another reason. Consider an abstraction such as make_array_jv which, if
given an improper filling function £, could cause multiple I_stores against the same location.
Currently, the effect of this is drastic— the entire program immediately terminates improp-
erly with an inconsistent store. With functional abstractions as primitives, it is possible
to localize such errors. The implementation of make array_jv could examine all the indices
computed by f before releasing the array pointer to its caller. If an index was computed
twice, the array value returned could be an error value, without causing the whole program
to blow up. Such an implementation comes with the loss of some, but not all, concurrency,
i.e., all the indices, but not the corresponding values, need to be computed before the array
is returned.

Such localization is not possible in a language with I-structures because, unlike functional
constructors, the index calculations may be spread over arbitrary regions of the program.

6.2 Nonfunctional Array Abstractions
It has been our experience that functional abstractions are not the only ones that lead to

compact, elegant programs. Consider the following (nonfunctional) “array-filling” abstrac-
tion:
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Def fill A ((mi,ni),(mj,nj)) £ =
{For i <- mi To ni Do
{For j <- mj To nj Do
Ali,j1 = £ (1,3)3} ;

which fills a rectangular region of the given matrix A. Our wavefront program can then be
written as follows:

{ A =nmatrix ((1,m),(1,n)) ;
border (i,j) =1 ;
interior (i,j) = A[i-1,j] + A[i-1,j-1] + A[i,j-1] ;
Call fill A ((1,m),(1,1)) border ;
Call fill A ((1,1),(2,n)) border ;
Call fill A ((2,m),(2,n)) interior
In
A}

Of course, for more efficiency, we could define special abstractions for filling in horizontal or
vertical regions:

Def fill col A ((mi,ni),j) £ = {For i <- mi To ni Do
Ali,jl = £ (i,7)}

Def fill row A (i,(mj,nj)) f = {For j <- mj To nj Do

Ali,j]1 = £ (G,P} ;

and use them to fill the borders of our matrix.
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7 Limitations of I-structures

While we believe that I-structures solve some of the problems that arise with functional data
structures, we have frequently encountered another class of problems for which they still do
not lead to efficient solutions.

Consider the following problem: we are given a very large collection of generators (say a
million of them), each producing a number. We wish to compute a frequency distribution
(histogram) of these values in, say, 10 intervals. An efficient parallel solution should allocate
an array of 10 “accumulators” initialized to 0, and execute as many generators as it can
in parallel. As each generator completes, its result should be classified into an interval
j, and the j’th accumulator should be incremented. It does not matter in what order
the accumulations are performed, so there are no serious determinacy issues, except for the
following synchronization requirement: there is a single instant when the resulting histogram
is ready (i.e., available to consumers)— it is ready when all the generators have completed.
To avoid indeterminacy, no consumer should be allowed to read any location of the histogram
until this instant.

A second example: In a system that performs symbolic algebra computations, consider the
part that multiplies polynomials. A possible representation for the polynomial

ap + ar1x + ayx? + asx®... + a,z"

would be an array of size n + 1 containing the coefficients ag, ..., a,. To multiply two
polynomials A and B of degree n together, we first need to allocate an array of size 2n, with
each location containing an “accumulator” initialized to 0; then, for each j, initiate (j + 1)
processes to compute ag X b;, a; X bj_1, ..., a; X by; as each of these processes completes,
its result should be added into the j’th accumulator. The order of the accumulation at any
index does not matter.

The synchronization requirement here is more complex. A consumer for a location in the
result array may read it as soon as the j 4+ 1 processes attached to it have completed; this
may occur before other locations are ready. Contrast this with the histogram example where
the entire array became available to consumers at a single instant.

These problems cannot be solved efficiently either with any of the functional data structures

that we have seen so far, or with I-structures. There are two fundamental problems to be
addressed:

1. How to model the accumulators. With I-structures and functional data structures,
once a location in an array has a value, it cannot be updated at all, even though the
update occurs in a safe, structured manner.

2. How to express the termination of the accumulation. In the histogram example, the
termination was a global condition. In the polynomial example, termination is tied to
each location.
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We mention some solutions to this problem at the end of the next section.” (See also [24]
for a connection between accumulators and logic variables.)

In [28], Wadler has proposed yet another functional array operation to handle such “accumulation”
problems. This construct combines an association-list of index-and-value pairs, together with a reduction
operator to specify the array. We do not yet know what are the implementation issues for this construct.

36



8 Conclusion

In this paper, we have studied the issue of data structures for parallel computing. We saw
that with functional data structures, it can be difficult simultaneously to achieve efficiency,
parallelism, and program clarity. We showed that I-structures go a long way towards solving
this problem.

[-structures grew out of a long-standing goal in our group to have functional languages
suitable for gemeral-purpose computation, which included scientific computations and the
array data-structures that are endemic to them. A historical perspective: the term “I-
structure” has been used for two separate concepts. One is an architectural idea, i.e., a
particular means of implementing a synchronization mechanism in hardware [5]. The other
is a language construct, a way to express incrementally-constructed data structures. The
two are independent— the architectural support makes sense even for FORTRAN, and the
language constructs make sense even on stock hardware. The emphasis in this paper is on
the language construct.

Originally ([7], 1981), an “I-structure” was not a separate kind of object with its own opera-
tions; rather, a functional array built using a fine-grained update-like operator in a particular
incremental manner (with no repeated indices) was termed an I-structure. It was hoped
that the compiler, through analysis, would be able to recognize such incremental construc-
tions and to implement them efficiently using destructive updates. This approach was later
abandoned after it was judged to be infeasible.

The connection with logic variables was originally inspired by Lindstrom’s FGL+LV [19] in
1985/1986. This clarification of the role of I-structure cells gave us the basis on which to
incorporate the current view of I-structures into the language as first class objects with their
own operations and semantics [21, 6], which is substantially different from the original view
of I-structures. Further progress on the semantics of logic variables in functional languages
is reported in [15].

The introduction of any nonfunctional feature (such as I-structures) into a functional lan-
guage is not without cost— the language loses referential transparency and with it, the
ability to reason about programs, do program transformations for optimization, etc. In the
case of I-structures, the loss of referential transparency is evident. For example, values bound
in these two statements are not semantically equivalent:

AA = { a = I_array (1,10)

In
a, alt;

BB = I_array (1,10), I_array (1,10)

They can be distinguished by the following function:
Def f XX = { Xa,Xb = XX;

Xa[1] = 23;

Xb[1] = 24
In

25} ;
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When applied to AA, £ will produce an inconsistent store, whereas when applied to BB, it
terminates properly with value 25. Even so, it is still much easier to reason about programs
with I-structures than it is to reason about programs in unconstrained imperative languages,
because of the absence of timing issues.

A functional language with I-structures can be made referentially transparent by adopting a
“relational” syntax (like logic programming languages) rather than a functional one. Refer-
ential transparency is lost in Id because the “I_array” construct allocates an array without
naming it. To fix this, we first replace it with a new construct called “array bounds”. Array
allocation is then achieved by the constraint statement:

array_bounds (x) = (m,n)

(A3l

which instantiates “x” to be an array with bounds (m,n). The array is thus not allocated
anonymously.

But this is not enough; functional abstraction still allows us to produce anonymous arrays:

Def alloc (m,n) = { array_bounds (x) = (m,n)
In x } ;

To prevent this, procedural abstraction (indeed all constructs) must be converted to a rela-
tional form. For example, a procedure cannot return a value explicitly; rather, it must take
an additional argument which it instantiates to the returned value. The alloc procedure
would be thus be written as follows:
Def rel_alloc (m,n) x = { array_bounds (a) = m,n ;
X =a }
For example, the invocation “rel_alloc (1,10) a” will instantiate “a” to an array of size 10.
Further, to specify that “a” is a “place-holder” argument rather than a value passed to
rel_alloc, we must annotate it appropriately, say with “~”. The invocation must therefore

be written as “rel_alloc (1,10) ~a”.

By adopting this annotated relational syntax, we believe that we could achieve referential
transparency, at the cost of complicating the syntax considerably. We are unconvinced that
this is a useful thing to do.

Because I-structure operations compromise referential transparency, as a matter of pro-
gramming style we strongly encourage the programmer to use only functional abstractions
wherever possible. A good Id programmer will separate the program into two parts— a
part that defines convenient functional data-structure abstractions in terms of I-structures
(as shown in Section 6), and the rest of the program that uses only those abstractions and
does not explicitly use I-structures. The latter part of the program is then purely functional,
and amenable to all the techniques available to reason about, and to manipulate functional
programs.

Postscript:

Writing scientific applications in Id has always been part of our methodology to evaluate
existing Id constructs and to suggest new ones. Based on the substantial experience we have
had with I-structures since we began writing this paper in 1986, we have recently devised a
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new, functional notation for arrays called “array comprehensions” [20] that can, in fact, be
used to express all four examples used in this paper. For example, the wavefront program:

{ A = {matrix (1,m),(1,n)

| [1,1] =1
| [i,1]1 =1 [| i <-2Tom
| [1,51 =1 [l j <-2Ton
| [i,j] = A[i-1, j 1 +
ALi-1,j-11 +
AT 1 ,j-1] [l 1 <-2Tom& j <- 2 To n}

In
A}

An array comprehension begins with a specification of the shape (e.g., matrix) and size
(index bounds) of the data structure, and contains one or more region-specification clauses.
For example, the clause above specifies that the contents of location (1,1) is 1; the second
clause specifies that the contents of location (4,1) is 1 for all 2 < i < m; and so on. This
program essentially compiles into exactly the program shown in Section 5.2, i.e., with the
same parallelism and space efficiency.

Another example: the inverse permutation program:

{array (1,n)
| [B[ill =i |l i <- 1 to n}

A simple extension to array comprehensions also handles some “accumulator” problems. A
10-bucket histogram of a million samples:

{array (1,10)

| [iJ =0 |l 1 <-1 to 10

accumulate (+)

| [classify s] gets 1 || s <- million_samples }

The clause before accumulate specifies the initial value of the histogram buckets (all zeroes).
The accumulate clause specifies that “+” is the accumulation operator. The final clause
specifies that for each sample s, 1 is added to the j’th bucket, where s is classified into the

7’th bucket.

The array comprehension construct greatly enlarges the set of applications that can be
captured succinctly in a purely functional style without losing parallelism and efficiency.
However, we frequently encounter other applications that still require the greater flexibility
of I-structures. Work on generalizing array comprehensions continues.
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