Map-Reduce

John Hughes

The Problem

i
; = Google ,
// 850TB

in 2006

The Solution?

B

 Thousands of commodity computers
networked together

e 1,000 computers =» 850GB each
e How to make them work together?

Early Days

 Hundreds of ad-hoc distributed algorithms
— Complicated, hard to write
— Must cope with fault-tolerance, load distribution,

av
-

MapReduce: Simplified Data Processing
on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat

In Symposium on Operating Systems Designh &
Implementation (OSDI 2004)

The Idea

Many algorithms apply the same operation to
a lot of data items, then combine results

Cf map :: (a->b) -> [a] -> [b]
Cf foldr :: (a->b->b) ->b ->[a] -> b
— Called reduce in LISP

Define a higher-order function to take care of
distribution; let users just write the functions
passed to map and reduce

Pure functions are great!

 They can be run anywhere with the same
result—easy to distribute

 They can be reexecuted on the same data to
recreate results lost by crashes

”It’s map and reduce, but not as we
know them Captain”

e Google map and reduce work on collections of
key-value pairs

* map_reduce mapper reducer :: [(k,v)] -> [(k2,v2)]
— mapper :: k->v->[(k2,v2)]
— reducer :: k2 -> [v2] -> [(k2,v2)]

All the values with the Usually just O
same key are collected orl

Example: counting words

e |nput: (file name, file contents)

l mapper

e |[ntermediate pairs: (word, 1)

l reducer

e Final pairs: (word, total count)

Example: counting words

mapping

r ("baz”,”hello sky”)

"hello”,1 > .
(f,d ouds” 1)) ("clouds”,[1])

Chello”) ("hello”,[1,1]) ("hello”,2)
(IIS kyH i) (”S ky”) [1]) (”Sky)

("foo”,”hello clouds”)

("clouds”,1)

Map-reduce in Erlang

* A purely sequential version

map_reduce_seq(Map,Reduce, Input) ->
Mapped = [{K2,V2}
11 {K,V} <- Input,
{K2,V2} <- Map(K,V)],
reduce_sedq(Reduce,Mapped).

reduce_seq(Reduce,KVs) ->
[KV |] {K,Vs} <- group(lists:sort(KvVs)),
KV <- Reduce(K,Vs)].

Map-reduce in Erlang

* A purely sequential version

[{1.[a.,b]}.{2.[c]}.{3.[d,el}]

L I |

{x2,v2} 1.
reduce_seq(Reduce,Ma
reduce_seq(Reduce,KVs
[KV |l {K,Vs} <—Iists:sort(KVs)),

KV <- RedUCe(K;Vs)].-

~
"{> group(l{1,a},{1,b},.{2,c}.{3,d}.{3.e}])-

Counting words

mapper(File,Body) ->
[{string:to lower(W),1}]] W <- words(Body)].

reducer(Word,Occs) ->
[{Word, lists:sum(Occs) }].-

count_words(Files) ->
map_reduce_seq(fun mapper/2, fun reducer/2,
[{File,body(File)} || File <- Files].

Page Rank

mapper(Url , Html) ->
Urls = find urls(Url,Html),
[{U,1} || U <- Urls].

reducer(Url,Ns) ->
[{Url, lists:sum(Ns)}].

page_ rank(Urls) ->
map_reduce_seq(fun mapper/2, fun reducer/2,
[{Url,fetch urlUrb)} |]] Url <- Urls]).

Saves memory in sequential
map_reduce Why not fetch the
Parallelises fetching in a parallel one URLs in the mapper?

Page Rank

mapper(Url,ok) ->
HEml = fetch _url(Url),
Urls = find urls(Url,Html),
[{U,1} || U <- Urls].

reducer(Url,Ns) ->
[{Url,[lists:sum(Ns)]}]-

page_ rank(Urls) ->
map_reduce_seq(fun mapper/2, fun reducer/2,
[{Url,ok} || Url <- Urls]).

Building an Index

mapper(Url,ok) ->
Hetml = fetch _url(Url),
Words = words(Html),
[{W,Url}]] W <- Words].

reducer(Word,Urlss) ->
[{Word,Urlss}].

buitld _index(Urls) ->
map_reduce_seq(fun mapper/2, fun reducer/2,
[{Url,ok} || Url <- Urls]).

Crawling the web

e Key-value pairs:
— {Url,Body} if already crawled
— {Url,undefined} if needs to be crawled

mapper(Url ,undefined) ->
Body = fetch _url(Url),
[{Url,Body}] ++
[{U,undefined} || U <- find urls(Url,Body)];
mapper(Url,Body) ->

[{Url,Body}].

Crawling the web

 Reducer just selects the already-fetched body
if there is one

reducer(Url,Bodies) ->
case [B || B <- Bodies, B/=undefined] of

1 ->
[{Url ,undefined}];
[Body] ->

[{Url,Body}]
end.

Crawling the web

e Crawl up to a fixed depth (since we don’t have
850TB of RAM)

crawl (O,Pages) ->
Pages;
crawl (D,Pages) ->
crawl (D-1,
map_reduce_seq(fun mapper/2, fun reducer/2,

Pages)).

 Repeated map-reduce is often useful

Parallelising Map-Reduce

e Divide the input into M chunks, map in
parallel
— About 64MB per chunk is good!
— Typically M ~ 200,000 on 2,000 machines (~13TB)

e Divide the intermediate pairs into R chunks,
reduce in parallel

, Problem: all {K,V} with the
— Typically R ~ 5,000

same key must end up in
the same chunk!

Chunking Reduce

e All pairs with the same key must end up in the
same chunk

e Map keys to chunk number: 0..R-1

— e.g. hash(Key) rem R
erlang:phash2(Key,R)

 Every mapper process generates inputs for all
R reducer processes

A Naive Parallel Map-Reduce

Spawn a

map_reduce par(Map,M,Reduce,R, Input) > WAEIsIelEE send
Parent = self(),
Splits = sphit_into(M, Input), Spawn a
Mappers =

[spawn_mapper(Parent,Map .k

|] Split <- Splits

rodiicer far

Mappeds = .
[receive {Pid,L} ->g8fe Combine and
Reducers = sort the results

[spawn_reducer(Parent,Res
1] 1 <- lists:seq((!
Reduceds =
[receive {Pid, -> L end || Pid <- Reducers],
lists:sort(lists:flatten(Reduceds)).

Mappers

spawn_mapper(Parent,Map,R,Split) ->
spawn_link(fun() ->
Mapped =
%% tag each pailr with 1ts hash
[{erlang:phash2(K2,R),{K2,V2}}
Il {K,V} <- Split,
{K2,V2} <- Map(K,V)],
Parent 1
%% group pailrs by hash tag
{selft(),group(lists:sort(Mapped))}
end).

Reducers

spawn_reducer(Parent,Reduce, I ,Mappeds) ->
%% collect pailrs destined for reducer |
Inputs = [KV
|| Mapped <- Mappeds,
{J,KVs} <- Mapped,
1==J,
KV <- KVs],
%% spawn a reducer just for those Inputs
spawn_link(fun() ->
Parent !
{self(),reduce seq(Reduce, Inputs)}

end).

Results

e Despite naivety, the examples presented run
more than twice as fast on a 2-core laptop

Why is this naive?

e All processes run in one Erlang hode—real
map-reduce runs on a cluster

e We start all mappers and all reducers at the
same time—would overload a real system

e All data passes through the "master”
process—needs far too much bandwidth

Data Placement

Data is kept in the file system, not in the
master process

— the master just tells workers where to find it

Two kinds of files:
— replicated on 3+ nodes, survive crashes
— local on one node, lost on a crash

Inputs & outputs to map-reduce are
replicated, intermediate results are local

Inputs & outputs are not collected in one
place, they remain distributed

Intermediate values

e Each mapper generates R local files,
containing the data intended for each reducer

— Optionally reduces each file locally

 Each reducer reads a file from each mapper,
by rpc to the node where it is stored

 Mapper results on nodes which crash are
regenerated on another node

Master process

Spawns a limited number of workers

Sends mapper and reducer jobs to workers,
sending new jobs as soon as old ones finish

Places jobs close to their data if possible

Tells reducers to start fetching each mapper
output as soon as it is available

A possible schedule

w1
W2
w3

w4 Read 1>2 Read 2>2 Read3>2 Reduce 2

Each reduce worker starts to read map output as soon
as possible

Fault tolerance

Running jobs on nodes that fail are restarted
on others (Need to detect failure, of course)

Completed maps are rerun on new nodes

— because their results may be needed

Completed reduce jobs leave their output in
replicated files—no need to rerun

Close to the end, remaining jobs are replicated

— Some machines are just slow

“During one MapReduce operation, network
maintenance on a running cluster was causing
groups of 80 machines at a time to become
unreachable for several minutes. The MapReduce
master simply re-executed the work done by the
unreachable worker machines and continued to
make forward progress, eventually completing the
MapReduce operation.”

Usage

-._-. '

:

=
T X00701

—

[200601

|

™~ X501

m X401
Y 1 717 1 0301

HLL LR |

ANI] ZINOS W) SIIWRSIN JO INPURN

P8 F G

Google web search indexing

Before After

Fl o=

3300 /700
LOC LOC

Experience

“Programmers find the system easy to use: more than
ten thousand distinct MapReduce programs have been
implemented internally at Google over the

past four years, and an average of one hundred
thousand MapReduce jobs are executed on Google’s
clusters every day, processing a total of more than
twenty petabytes of data per day.”

From MapReduce: Simplified Data Processing on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat, CACM 2008

Applications

large-scale machine learning
clustering for Google News and Froogle

extracting data to produce reports of popular
gueries

— e.g. Google Zeitgeist and Google Trends
processing of satellite imagery

language model processing for statistical
machine translation

large-scale graph computations.
Apache Hadoop

Map-Reduce in Erlang

Functional programming concepts underlie
map-reduce (although Google use C++)

Erlang is very suitable for implementing it

Nokia Disco—www.discoproject.org
— Used to analyze tens of TB on over 100 machines
— Multiple masters

Riak MapReduce

— Improves locality in applications of the Riak no-
SQL key-value store

Reading: one of

 The original OSDI 2004 paper (see earlier)

e MapReduce: simplified data processing on
large clusters, Jeffrey Dean and Sanjay
Ghemawat

In Communications of the ACM - 50th anniversary issue:
1958 — 2008, Volume 51 Issue 1, January 2008

— A shorter summary, some more up-to-date info

You may have seen...

IW Google I/O: Hello Dataflo: %
B e L] e
C' [0 www.informationweek.com/cloud/software-as-a-service/google-i-o-hello-d (@] A =
=% Appar Livedrive | The Clou... [Photography &™ Wiki - PROWESS - E... U Farslag pa webbplat... »] Ovriga bokmarken

SECTIONS w 2 Q

Google I/0: Hello
Dataflow, Goodbye
MapReduce

Google introduces Dataflow to handle
streams and batches of big data, replacing
MapReduce and challenging other public
cloud services.

What is it?

5 Appar Livedrive | The Clou...

(7 Photography &"% Wiki - PROWESS - E.. [[] Férslag pé webbplat.. [Y WebSlice-galleri [Komigéng [1 Apple [Y Yahoo! ¥ Google Maps (DB YouT

—————

FlumeJava: Easy, Efficient Data-Parallel Pipelines

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R. Henry,
Robert Bradshaw, Nathan Weizenbaum

Google, Inc.
{chambers,raniwala,fjp,sra,rrh,robertwb,nweiz } @google.com

Abstract

MapReduce and similar systems significantly ease the task of writ-
ing data-parallel code. However, many real-world computations re-
quire a pipeline of MapReduces, and programming and managing
such pipelines can be difficult. We present FlumeJava, a Java li-
brary that makes it easy to develop, test, and run efficient data-
parallel pipelines. At the core of the FlumeJava library are a cou-
ple of classes that represent immutable parallel collections, each
supporting a modest number of operations for processing them in
parallel. Parallel collections and their operations present a simple,
high-level, uniform abstraction over different data representations
and execution strategies. To enable parallel operations to run effi-
ciently, FlumeJava defers their evaluation, instead internally con-
structing an execution plan dataflow graph. When the final results

MapReduce works well for computations that can be broken
down into a map step, a shuffle step, and a reduce step, but for many
real-world computations, a chain of MapReduce stages is required.
Such data-parallel pipelines require additional coordination code
to chain together the separate MapReduce stages, and require addi-
tional work to manage the creation and later deletion of the inter-
mediate results between pipeline stages. The logical computation
can become obscured by all these low-level coordination details,
making it difficult for new developers to understand the computa-
tion. Moreover, the division of the pipeline into particular stages
becomes “baked in” to the code and difficult to change later if the
logical computation needs to evolve.

In this paper we present FlumeJava, a new system that aims to
support the development of data-parallel pipelines. FlumeJava is a

Tosrn Lhenesr anmtaead aecised o0 oo alacoan thot comeaonemdb eomwaed a0

4|

What is it?

A datatype of immutable parallel collections
— which can be distributed over a data centre
— or consist of streaming data

An APl including map, reduce, filter, group...
that apply pure functions to collections

An optimising on-the-fly compiler that
converts Flumelava pipelines to a sequence of
MapReduce jobs...

A higher-level interface built on top of
MapReduce

	Map-Reduce
	The Problem
	The Solution?
	Early Days
	Slide Number 5
	The Idea
	Pure functions are great!
	”It’s map and reduce, but not as we know them Captain”
	Example: counting words
	Example: counting words
	Map-reduce in Erlang
	Map-reduce in Erlang
	Counting words
	Page Rank
	Page Rank
	Building an Index
	Crawling the web
	Crawling the web
	Crawling the web
	Parallelising Map-Reduce
	Chunking Reduce
	A Naïve Parallel Map-Reduce
	Mappers
	Reducers
	Results
	Why is this naïve?
	Data Placement
	Intermediate values
	Master process
	A possible schedule
	Fault tolerance
	Slide Number 32
	Usage
	Google web search indexing
	Experience
	Applications
	Map-Reduce in Erlang
	Reading: one of
	You may have seen…
	What is it?
	What is it?

