GPU Programming

With thanks to Manuel Chakravarty
for some borrowed slides

GPUs change the game

Gaming drives development

Relative GPU Performance

Using 3DMark Vantage (Performance Preset)

an s A
A & &F &
g A Ar
6 6

o

& & W A \ s

50000

L0000

P00

20000

10000 I
' R I R S S
4&:

W 700 Series 600 Series W 500 Series 400 Series

Image from http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black/performance

GPGPU benefits

General Purpose programming on GPU
GPUs used to be very graphics-specific (shaders and all that)

The pipeline is becoming more and more general purpose
even in the gaming GPUs, and there are also special GPUs for
GPGPU (more expensive, double precision).

Typical GPGPU users are from finance, sciences needing
simulation, bioinformatics etc.

See http://gpgpu.org/

Processing power

Theoretical GFLOP/s

5750
5500
5250
5000

4750
4500 Intel CPU Double Precision

NVIDIA GPU Single Precision
et NV|DIA GPU Double Precision

4250 emgmm|ntel CPU Single Precision

4000

3750

3500

3250

3000

2750

2500

2250

2000

1750 Tesla K40
1500 Tesla K20X
1250

1000 Tesla M2090

750 Testa C2050 -0

500 Tesla C1060 Ivy Bridge
250 Harpertown

Woodcrest
0 " pentium 4 Bloomfield Westmere

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Sandy Bridge

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract

Bandwidth to memory

Theoretical GB/s

360

330 —

300

an@ue (P Tesla K40

270 GeForce GPU
Tesla K20X

240 TestaGP———— gL

210

180 -

Tesla M2090
150

Tesla C2050

120

90
Tesla C1060
esia vy Bridge

60 Sandy Bridge
Bloomfield

30 -
GeForce FX 5900

Prescott Woodcrest
Westmere

0 Harpertown
orthwood ’ I I

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Transistors used differently

ALU IAm
CPU

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract

Need a new programming model

Multithreaded QDA Program

|]

GPU with 2SMs |G|luwiun4sus

SMO || SM1 || SMO SM1 SM 2 || SM3 ||

ko mk l-n-n--

SM = multiprocessor with many small cores/ALUs. Program should run both on wimpy
GPU and on a hefty one. MANY threads need to be launched onto the GPU.

v

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GT 650M"
CUDA Driver Version / Runtime Version 55/5.5
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 1024 MBytes (1073414144 bytes)
(2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
GPU Clock rate: 900 MHz (0.90 GHz)
Memory Clock rate: 2508 Mhz
Memory Bus Width: 128-bit

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536

Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel
Kernell<<<>>>()

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#theterogeneous-programming

CUDAC

Gives the user fine control over all of this

User must be aware of the memory hierarchy and
of costs of memory access patterns

CUDA programming is great fun (but not the
subject of this course) !

OpenCL is a sort of platform-independent CUDA

Raising the level of abstraction

Imperative
Thrust library (c++ template lib. Similar to STL)

CUB libra 'V (reusable software components for every layer of
the CUDA hierarchy. Very cool!)

PyCUDA, Copperhead and many more
Sestoft mentioned a commercial F# to CUDA compiler (from QuantAlea)!

Loo.py is seriously cool!

Raising the level of abstraction

Functional
Accelerate
Obsidian

(both EDSLs in Haskell generating CUDA)

Nova (U. Edinburgh and NVIDIA, skeleton-based like Accelerate, IR
looks generally interesting)

and more

Accelerate

Amorphous T
Data Parallel
Nested R Haskell
Flat Accelerate Repa
Embedded Full

(2nd class) (1t class)

Accelerating Haskell Array Codes with Multicore GPUs

Manuel M. T. Chakravarty’ Gabriele Keller

TUniversity of New South Wales, Australia

{chak,keller,seanl,tmcdonell }@cse.unsw.edu.au

Abstract

Current GPUs are massively parallel multicore processors opti-
mised for workloads with a large degree of SIMD parallelism.
Good performance requires highly idiomatic programs, whose de-
velopment is work intensive and requires expert knowledge.

To raise the level of abstraction, we propose a domain-specific
high-level language of array computations that captures appropri-
ate idioms in the form of collective array operations. We embed
this purely functional array language in Haskell with an online
code generator for NVIDIA’s CUDA GPGPU programming envi-
ronment. We regard the embedded language’s collective array op-
erations as algorithmic skeletons; our code generator instantiates
CUDA implementations of those skeletons to execute embedded
array programs.

This paper outlines our embedding in Haskell, details the design
and implementation of the dynamic code generator, and reports on
initial benchmark results. These results suggest that we can com-

pete with moderately optimised native CUDA code, while enabling
mrrnh fnlmmnlas cAriean meAcranan

DAMP’11

Sean Leetf

Trevor L. McDonell’ Vinod Grovert

¥NVIDIA Corporation, USA

{selee,vgrover}@nvidia.com

25]. Our work is in that same spirit: we propose a domain-specific
high-level language of array computations, called Accelerate, that
captures appropriate idioms in the form of parameterised, collec-
tive array operations. Our choice of operations was informed by
the scan-vector model [11], which is suitable for a wide range of
algorithms, and of which Sengupta et al. demonstrated that these
operations can be efficiently implemented on modern GPUs [30].

We regard Accelerate’s collective array operations as algorith-
mic skeletons that capture a range of GPU programming idioms.
Our dynamic code generator instantiates CUDA implementations
of these skeletons to implement embedded array programs. Dy-
namic code generation can exploit runtime information to optimise
GPU code and enables on-the-fly generation of embedded array
programs by the host program. Our code generator minimises the
overhead of dynamic code generation by caching binaries of pre-
viously compiled skeleton instantiations and by parallelising code
generation, host-to-device data transfers, and GPU kernel loading
and configuration.

In contrast to our earlier prototype of an embedded language

Accelerate overall structure

Surface language
1
Reify & recover sharing
HOAS = de Bruijn

1
Optimise (fusion)

— Control —

Non-parametric array
representation
— unboxed arrays
— array of tuples
= tuple of arrays

— Data —

\

Code generation

1
- Compilation
1

<

Memoisation
LLVM.run
overlap
CUDA.run

Copy host — device
(asynchronously)

\

- CPU -

— A
Allocate Link & configure
memory kernel

N/

- GPU -

Parallel execution

l Frontend l l Multiple Backends l l First pass | Second pass l

<

Figure 2. Overall structure of Data.Array.Accelerate.

(from the DAMP’11 paper)

GPU programming in Haskell
| Haskell GPU programming

Accelerate back-ends

back-end addresses state
Interpreter testing works
CUDA Nvidia graphic cards works

CL any graphic card through OpenCL prototype
LLVM any processor through LLVM prototype
Repa any processor in plain Haskell stalled
FPGA programmable hardware fictional

Thielemann’s view

Accelerate

* Accelerate is a Domain-specific language for
GPU programming

Compiled by NVidia’s compiler,
loaded onto the GPU,
d and executed.
Running

Haskell/Accelerate [__ 4 CUDAcode [Ji

program

Results of the GPU computation

* This process may happen several times during the program’s execution
* The CUDA code isn’t compiled every time — code fragments are cached and re-used

User’s view (slide by S. Marlow, with thanks)

Embedded code-generating DSL

You write a Haskell program that generates
CUDA programs

But the program should look very like a Haskell
program (even though it is actually producing
ASTSs)

(see Lava)

Repa shape-polymorphic arrays
reappear

dataZ =27 — rank-0
data tail :. head = tail :. head — increase rank by 1

type DIMO =Z

type DIM1 = DIMO :. Int

type DIM2 =DIM1 :. Int

type DIM3 = DIM2 :. Int {and so on)

type Array DIMO e = Scalar e
type Array DIM1 e = Vector e

Dot product in Haskell

dotp_list :: [Float] -> [Float] -> Float
dotp_list xs ys = foldl (+) O (zipWith (*) xs ys)

Dot product in Accelerate

dotp :: Acc (Vector Float) -> Acc (Vector Float)
-> Acc (Scalar Float)

dotp xsys — fold (+) O (zipWith (*) xs ys)

Assume an associative operator that is folded in a tree shape

Dot product in Accelerate

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys = let xs’ = use xs
ys’ = useys
in
fold (+) O (zipWith (*) xs’ ys’)

Moving an array (literally)

from the Haskell world to the Accelerate world

use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

Implies a host to device transfer

Moving an array (literally)

from the Haskell world to the Accelerate world

use (Computations in Acc are run on the device
They work on arrays and tuples of arrays.
Remember we are talking about FLAT data parallelism

Implies
However, arrays of tuples are allowed (and get converted to tuples of arrays

internally)

Plain Haskell code is run on the host

What happens with dot product?

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys = let xs’ = use xs
ys’ = use ys
in
fold (+) O (zipWith (*) xs’ ys’)

This results (in the original Accelerate) in 2 kernels, one for fold and one for zipWith

Collective array operations = kernels

ZipWith
:: (Shape sh, Elt a, Elt b, Elt c) =>
(Exp a -> Exp b -> Exp c)
-> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

Collective array operations = kernels

e Exp a : a scalar computation delivering an a
* 3 is typically an instance of class Elt

map
:: (Shape sh, Elt a, Elt b) =>
(Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

Collective array operations = kernels

fold
:: (Shape sh, Elt a) =>
(Exp a -> Exp a -> Exp a)
-> Exp a -> Acc (Array (sh :. Int) a) -> Acc (Array sh a)

Reduces the shape by one dimension

to run on the GPU

Prelude A I> import Data.Array.Accelerate.CUDA as C

Prelude A1 C> C.run S A.map (+1) (use arr)

Loading package syb-0.4.0 ... linking ... done.
Loading package filepath-1.3.0.1 ... linking ... done.
Loading package old-locale-1.0.0.5 ... linking ... done.
Loading package time-1.4.0.1 ... linking ... done.
Loading package unix-2.6.0.1 ... linking ... done.

Array (Z:.3:.5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
Prelude A1 C> C.run S A.map (+1) (use arr)
Array (Z:.3:.5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Second attempt much faster. Kernels are memoised.

map (\x —> x + 1) arr

Slides by M. Chakravarty, with thanks

map (\x -> x + 1) arr

Reifyl AST
v

Map (Lam (Add "PrimApp"

(ZeroIdx, Const 1))) arr

map (\x —> x + 1) arr

Reifyl AST
v Optimise

Map (Lam (Add “PrimApp’ /
(ZeroIdx, Const 1))) arr [

map (\x —> x + 1) arr

Reifyl AST
v \
Optimise
Map (Lam (Add "PrimApp" ,,//
(ZeroIdx, Const 1))) arr [

Skeleton instantiation
v

global__ void kernel (float *xarr, int n)

{...

map (\x —> x + 1) arr

Reifyl AST
v Optimise

Map (Lam (Add “PrimApp’ /
(ZeroIdx, Const 1))) arr [

Skeleton instantiation
v

lobal _ void kernel (float *xarr, int n)

{...

CUDA compiler .-
ﬂ :’

O O e
O O O
OO
-0 - - O

{...

map (\x —> x + 1) arr

Reifyl AST
v Optimise

Map (Lam (Add "PrimApp’ —///
(ZeroIdx, Const 1))) arr [

Skeleton instantiation
v

lobal _ void kernel (float xarr, int n))

&

CUDA compiler ,»
‘ c:

O Or-
O O O
OO
L™ I -0

mkMap dev aenv fun arr = return $
CUTrans1Skel "map" [cunit]

$esc: ("#include <accelerate cuda.h>")

extern "C" __global__ void

map ($params:argIn, $params:argOut) {
const int shapeSize = size(shOut);
const int gridSize $exp: (gridSize dev);
int 1x;

for (ix = $exp:(threadIdx dev)
; 1X < shapeSize
ix += gridSize) {
$items: (dce x .=. get ix)
$items: (setOut "ix" .=. f x)

Combinators as skeletons

Skeleton = code template with holes
Hand tuned

Uses Mainland’s CUDA quasi-quoter

Antiquotes such as are the holes

Performance (DAMP’11 paper)

Dot Product
10

3.51

3.12

Time (ms)

2 4 6 8 10 12 14 16 18
Number of elements (million)
O Accelerate < CUBLAS

Figure 3. Kernel execution time for a dot product.

Performance (DAMP’11 paper)

Dot Product
10

3.51

3.12

Time (ms)

8
Number of elements (milliol P retty 800d

O Accelerate M But reflecting the fact that dotp in
Figure 3. Kernel execution time for & Alelel=/ [= piar ali=lels 20 daiapi=l s L plelpl=

Conclusion (DAMP’11 paper)

Need to tackle fusion of adjacent kernels
Sharing is also an issue

One should write programs to take advantage of
kernel memoisation (to reduce kernel
generation time)

Optimising Purely Functional GPU Programs

Trevor L. McDonell

Manuel M. T. Chakravarty

Gabriele Keller ~ Ben Lippmeier

University of New South Wales, Australia

{tmcdonell,chak,keller,benl}@cse.unsw.edu.au

Abstract

Purely functional, embedded array programs are a good match for
SIMD hardware, such as GPUs. However, the naive compilation
of such programs quickly leads to both code explosion and an
excessive use of intermediate data structures. The resulting slow-
down is not acceptable on target hardware that is usually chosen to
achieve high performance.

In this paper, we discuss two optimisation techniques, sharing
recovery and array fusion, that tackle code explosion and elimi-
nate superfluous intermediate structures. Both techniques are well
known from other contexts, but they present unique challenges
for an embedded language compiled for execution on a GPU. We
present novel methods for implementing sharing recovery and array
fusion, and demonstrate their effectiveness on a set of benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages

Keywords Arrays; Data parallelism; Embedded language; Dy-
namic compilation; GPGPU; Haskell; Sharing recovery; Array fu-
sion

1. Introduction

Recent work on stream fusion [12], the vector package [23], and
the parallel array library Repa [17, 19, 20] has demonstrated that
(1) the performance of purely functional array code in Haskell
can be competitive with that of imperative programs and that (2)
purely functional array code lends itself to an efficient parallel
implementation on control-parallel multicore CPUs.

ICFP’13

programs consisting of multiple kernels the intermediate data struc-
tures must be shuffled back and forth across the CPU-GPU bus.

We recently presented Accelerate, an EDSL and skeleton-based
code generator targeting the CUDA GPU development environ-
ment [8]. In the present paper, we present novel methods for op-
timising the code using sharing recovery and array fusion.

Sharing recovery for embedded languages recovers the sharing
of let-bound expressions that would otherwise be lost due to the
embedding. Without sharing recovery, the value of a let-bound
expression is recomputed for every use of the bound variable.
In contrast to prior work [14] that decomposes expression trees
into graphs and fails to be type preserving, our novel algorithm
preserves both the tree structure and typing of a deeply embedded
language. This enables our runtime compiler to be similarly type
preserving and simplifies the backend by operating on a tree-based
intermediate language.

Array fusion eliminates the intermediate values and additional
GPU kernels that would otherwise be needed when successive
bulk operators are applied to an array. Existing methods such as
foldr/build fusion [15] and stream fusion [12] are not applica-
ble to our setting as they produce tail-recursive loops, rather than
the GPU kernels we need for Accelerate. The NDP2GPU system
of [4] does produce fused GPU kernels, but is limited to simple
map/map fusion. We present a fusion method partly inspired by
Repa’s delayed arrays [17] that fuses more general producers and
consumers, while retaining the combinator based program repre-
sentation that is essential for GPU code generation using skeletons.

With these techniques, we provide a high-level programming
model that supports shape-polymorphic maps, generators, reduc-
tions, permutation and stencil-based operations, while maintaining
performance that often approaches hand-written CUDA code.

Skeleton #1 Skeleton #2

dotp xs ys = fold (+) 0 (zipWith (%) xs ys)

Intermediate array

Extra traversal

Combined skeleton

dotp xs ys = fold (+) 0 (zipWith (%) xs ys)

Producers

“Operations where each element of the result array depends on at most one element of
each input array. Multiple elements of the output array may depend on a single input
array element, but all output elements can be computed independently. We refer to
these operations as producers.”

~
L~
L7
L7
-

Producers

“Operations where each element of the result array depends on at most one element of
each input array. Multiple elements of the output array may depend on a single input
array element, but all output elements can be computed independently. We refer to

these operations as producers.”

L
L 7

>

L 7
v
v

Consumers

“Operations where each element of the result array depends on multiple elements of
the input array. We call these functions consumers, in spite of the fact that they also
produce an array.”

\

map
zipWith

backpermute ::

replicate

slice

generate

fold
scan{l,r}
permute

stencil

Producers
(Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)
(Exp a -> Exp b -> Exp c¢) -> Acc (Array sh a) -> Acc (Array sh b)
Acc (Array sh c)
Exp sh’ -> (Exp sh’ -> Exp sh) -> Acc (Array sh a)
Acc (Array sh’ e)
Slice slix => Exp slix
Acc (Array (SliceShape slix) e)
Acc (Array (FullShape slix) e)
Slice slix
Acc (Array (FullShape sli
Acc (Array (SliceShape slix)
Exp sh -> (Exp sh -> Exp a) ->

(Exp a -> Exp a -> Exp a) -> Exp a Note the NESL influence on
Acc (Array sh a) : i
(Exp a -> Exp a -> Exp a) -> Exp a programming idioms!!
Acc (Vector a)

(Exp a -> Exp a -> Exp a) -> Acc (
(Exp sh -> Exp sh’) -> Acc (Array
Stencil sh a stencil => (stencil -
Acc (Array sh a) -> Acc (Array sh

—USINg NEtworks of skeletons

) 4

___i c2

) 94

—USINg Networks of skeletons

Phase 1: producer/producer fusion

i

This is the easy case

—USINg Networks of skeletons

Phase 2: consumer/producer fusion

Fuse a producer followed by a consumer into the consumer
Happens during code generation. Speciailise consumer skeleton with producer code

—USINg Networks of skeletons

Phase 2: consumer/producer fusion

S0

Producer consumer pairs were not fused at time of writing of the ICFP’13 paper

—USION O skeletons
...reduces the abstraction penalty

Code generation 1dioms vary from high-level combinators
Smart constructors combine producers

Instantiate consumer skeletons with producer code

Run Time (ms)

Dot Product

100 F T T 1]
10 E
1 3 ata.Vector —e— 1

- Repa -N8 —m—

- NDP2GPU —B— -

- Accelerate -fusion —¢— -

T F CUBLAS —— -

C | | | | | | | []

4 6 8 10 12 14 161820

Elements (millions)

blackscholes ::

Sharing recovery

Vector (Float, Float, Float)

-> Acc (Vector (Float, Float))

blackscholes =
where

callput x =

let (price,

r =

v =

v_sqrtT =

d1

d2 =

cnd d =

cndD1 =

cndD2 =

x_expRT =
in

map callput .

strike, years) =

use

unlift x
constant riskfree
constant volatility

v * sqrt years

= (log (price / strike) +

(r + 0.5 * v x v) * years) / v_sqrtT
dl - v_sqrtT

let c =cnd’ dind > 0 ? (1.0 - ¢, c)
cnd di

cnd d2

strike * exp (-r * years)

lift (price * cndDl1 - x_expRT * cndD2

, x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1))

riskfree, volatility ::
= 0.02
volatility = 0.30

riskfree

horner ::

horner coeff x =
where

madd a b = a

cnd’ :: Floating

cnd’ 4 =
let poly
coeff

rsqrt2pi
k

in
rsqrt2pi * exp

Num a =>

Float

[a] > a > a
x * foldrl madd coeff

+ x*b

a=>a->a

= horner coeff

[0.31938153, -0.356563782,
1.781477937, -1.821255978,
1.330274429]

0.39894228040143267793994605993438
1.0 / (1.0 + 0.2316419 * abs d)

(-0.5%d*d) * poly k

“The function callput includes a significant amount of sharing: the
helper functions cnd’, and hence also horner, are used twice —for d1
and d2— and its argument d is used multiple times in the body. Our
embedded implementation of Accelerate reifies the abstract syntax of
the (deeply) embedded language in Haskell. Consequently, each
occurrence of a let-bound variable in the source program creates a
separate unfolding of the bound expression in the compiled code.”

Summary

ICFP’13 paper introduces a new way of doing sharing
recovery (a perennial problem in EDSLs)

It also introduces novel ways to fuse functions on arrays
Performance is considerably improved

This is a great way to do GPU programming without
bothering too much about how GPUs make life difficult

Read Chap. 6 of Marlow book

Look at accelerate-examples

Break?

GPU programming in Obsidian

Ack: Obsidian is developed by Joel Svensson.

github.com/svenssonjoel/obsidian
checkout master-dev for latest version

Accelerate

Get acceleration from your GPU by writing familiar
combinators

Hand tuned skeleton templates

Compiler cleverness to fuse and memoise the
resulting kernels

Leaves a gap between the programmer and the
GPU (which most people want)

Obsidian

Can we bring FP benefits to GPU programming,
without giving up control of low level details?

This is an instance of the research questions in
our big SSF project called Resource Aware
Functional Programming

(You might have seen a lecture about Feldspar
in some other course.)

GPU programming in Haskell
l—Accelerate programming

Obsidian

m mid-level programming of CUDA, OpenCL and sequential C
on CPU

m explicit control of parallelism arrangement in Threads, Thread

blocks, Grid

m supports batched monadic/imperative programming

my applications:
m Cholesky decomposition for band-matrices:
based on mapAccum (not available in Accelerate)

m pivot vector to permutation array conversion:
requires mutable manipulation (not complete in Obsidian)

m call Obsidian code from Accelerate

Thielemann’s view again

Assumptions

To get really good performance from a GPU, one
must control

use of memory

memory access patterns

synchronisation points

where the boundaries of kernels are

patterns of sequential code (control of task size)

Vital to be able to experiment with variants on a
kernel easily

Assumptions

To get really good performance from a GPU, one
must control

We aim to give the this control

We avoid compiler cleverness!

Cost model should be entirely transparent

Building blocks

Embedded DSL in Haskell
Pull and push arrays

Use of types to allow “hierarchy-polymorphic” functions
(Thread, Warp, Block, Grid)

A form of virtualisation to remove arbitrary limits like
max #threads per block

Memory layout is taken care of (statically)

Building blocks

Embedded DSL in Haskell

Pull and push arrays

Use t

fu nctc Delayed arrays
See Pan by Elliot

Or even

A form
like ma

Building blocks

Embedded DSL in Haskell
Pull and push arrays

Use of types
functions (T

A new array representation due to Claessen
will come back to this

A form of vi
like max #th

GPU

Shared memory

Global memory

CUDA programming model

Single Program Multiple Threads
Kernel = Function run N times by N threads
Hierarchical thread groups

Associated memory hierarchy

Per-thread lozal
;- ——
Thread Block
20000000009 4 3 Per-block shared
-4 > memory
s L

Gnrd O

Blodk (0, 0) Block (1, (0) Black(2 0)

Ap—.-

Blodk (0, 1) || Block (1,1) || Black (2. 1)

W" ’ W

Grd 1 Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1 1)
2. —
Block (0, 2) Block (1, 2)

]

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/#memory-hierarchy

The flow of kernel execution

Initialize/acquire the device (GPU)

Allocate memory on the device (GPU)

Copy data from host (CPU) to device (GPU)
Execute the kernel on the device (GPU)
Copy result from device (GPU) to host (CPU)
Deallocate memory on device (GPU)

Release device (GPU)

CUDA kernel

Executed by an array of Threads

Each thread has an ID that is used to compute memory
addresses and make control decisions

threadID |g|1|2]|3|4|5]|6]|7

float x = input[threadlID];

float y = func(x);
output[threadID] = y;

Blocks

Thread Block 0 Thread Block 1 Thread Block N - 1

7

2|1 3|1 4|5]6|7 0| 1] 2| 3| 4] 5| 6|7 0] 11 2| 3] 4] 5| 6

threadip | 0]

float x = float x = float x =

input[threadlD] ;

input[threadID]; input[threadlID];
float y = func(x); float y = func(x);

float y = func(x);
output[threadID] = y; output[threadID] = y;

output[threadID] = y;

Threads within a block communicate via shared memory and barrier synchronisation
(__ syncthreads();)

Threads in different blocks cannot cooperate

Level

Thread
Warp
Block
Grid

Parallelism

No

Yes
Yes
Yes

Hierarchy

Shared Memory

Yes
Yes
Yes
No

Thread synchronisation

No
Lock-step execution

Yes

No

Memory access patterns

Some patterns of global memory access can be
coalesced. Others cannot. Missing out on
coalescing ruins performance!

Global memory works best when adjacent threads
access a contiguous block

For shared memory, successive 32 bit words are in
different banks. Multiple simultaneous access to a
bank = bank conflict = another way to ruin
performance. Conflicting accesses are serialised.

Thread ID is usually built from

blockldx Block index within a grid uint3
blockDim Dimension of the block dim3

threadldxThread index within a block uint3

gridDim gives the dimensions of the grid (the number of blocks in each dimension)

We'll use linear blocks and grids (easier to think about)

For more info about CUDA see https://developer.nvidia.com/gpu-computing-webinars
esp. the 2010 intro webinars

First CUDA kernel

__global__ void inc(float *i, float *r){
unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
rlix] = i[ix]+1;

}

Host code

#include <stdio.h>

#include <cuda.h>

#define BLOCK_SIZE 256

#define BLOCKS 1024

#define N (BLOCKS * BLOCK_SIZE)

int main(){
float *v, *r;
float *dv, *dr;

(float*)malloc(N*sizeof(float));
(float*)malloc(N*sizeof(float));

\%
r

//generate input data
for (int 1 =0; 1 < N; ++1) {
v[i] = (float)(rand () % 1000) / 1000.0; }

/*¥ Continues on next slide */

Host code

cudaMalloc((void**)&dv, sizeof(float) * N);
cudaMalloc((void**)&dr, sizeof(float) * N);

cudaMemcpy(dv, v, sizeof(float) * N,cudaMemcpyHostToDevice);
1nc<<<BLOCKS, BLOCK_SIZE,@>>>(dv,dr);
cudaMemcpy(r, dr, sizeof(float) * N, cudaMemcpyDeviceToHost);

cudaFree(dv);
cudaFree(dr);

for (int 1 = 0; 1 < N; ++1) {
printf("%f ", r[i]); }
printf("\n");

free(v);
free(r);

Obsidian

incLocal arr = fmap (+1) arr

Building an AST just like in Accelerate

Obsidian Pull arrays

incLocal :: Pull Word32 EWord32 -> Pull Word32 EWord32
incLocal arr = fmap (+1) arr

Pull size element-type

Static Word32 = Haskell value known at compile time
Dynamic EWord32 = Exp Word32 (an expression tree)

Immutable

Obsidian Pull arrays

data Pull s a = Pull {pulllLen :: s,
pullFun :: EWord32 -> a}

(length and function from index to value, the read-function, see Elliott’s Pan,
also called delayed arrays)

type SPull = Pull Word32
type DPull = Pull EWord32

A consumer of a pull array needs to iterate over those indices of the array
it is interested in and apply the pull array function at each of them.

Fusion for free

fmap f (Pull n ixf) = Pull n (f . 1ixf)

Example

incLocal arr = fmap (+1) arr

This says what the computation should do

How do we lay it out on the GPU??

incPar :: Pull EWord32 EWord32 -> Push Block EWord32 EWord3Z2
incPar = push . inclLocal

push converts a pull array to a push array and pins
it to a particular part of the GPU hierarchy

No cost associated with pull to push conv.

Key to getting fine control over generated code

GPU Hierarchy in types

data Thread

data Step t

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block

GPU Hierarchy in types

-- | Type level less-than-or-equal test.
type family LessThanOrEqual a b where

LessThanOrkEqual Thread Thread = True
LessThanOrEqual Thread (Step m) = True
LessThanOrEqual (Step n) (Step m) = LessThanOrEqual n m
LessThanOrEqual x y = False

type a *<=* b = (LessThanOrEqual a b ~ True)

Program data type

data Program t a where

Identifier :: Program t Identifier
Assign :: Scalar a

=> Name

-> [Exp Word32]

-> (Exp a)

-> Program Thread ()

-- use threads along one level
-- Thread, Warp, Block.

ForAll :: (t *<=* Block) => EWord3Z2
-> (EWord32 -> Program Thread ())
-> Program t O

Program data type

seqgFor :: EWord32 -> (EWord32 -> Program t ()) -> Program t ()

Sync :: (t *<=* Block) => Program t ()

Program data type

Return :: a -> Program t a
Bind :: Program t a -> (a -> Program t b) -> Program t b

instance Monad (Program t) where
return = Return
(>>=) = Bind

See

Svenningsson, Josef, & Svensson, Bo Joel. (2013). Simple and Compositional
Reification of Monadic Embedded Languages. ICFP 2013.

Obsidian push arrays

data Push t s a = Push s (PushFun t a)

Program type

Length type a function that generates a loop at a particular level
of the hierarchy

The general idea of push arrays is due to Koen Claessen

Obsidian push arrays

-- | Push array. Parameterised over Program type and size type.
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()

Push array only allows bulk request to push ALL elements via a writer function

The general idea of push arrays is due to Koen Claessen

Obsidian push arrays

-- | Push array. Parameterised over Program type and size type.
data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a -> Program t ()
type Writer a = a -> EWord32 -> TProgram ()

consumer of a push array needs to apply the push-function to a suitable writer
Often the push-function is applied to a writer that stores its input value at the provided

input index into memory. This is what the compute function does when applied to a push
array.

The general idea of push arrays is due to Koen Claessen

Obsidian push arrays

The function push converts a pull array to a
push array:

push :: (t *<=* Block) => ASize s => Pull s e -> Push t s e
push (Pull n ixf) =
mkPush n $ \wf ->
forAll (sizeConv n) $ \i -> wf (ixf i) i

Obsidian push arrays

The function push converts a pull array to a push
array:

push :: (t *<=* Block) => ASize s => Pull s e -> Push t s e
push (Pull n ixf) =
mkPush n $ \wf ->
forAll (sizeConv n) $ \i -> wf (ixf i) i

This function sets up an iteration schema over the elements as a forAll loop. It is not

until the t parameter is fixed in the hierarchy that it is decided exactly how that loop is to
be executed. All iterations of the forAll loop are independent, so it is open for computation

in series or in parallel.

forAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

forAll n £ = ForAll n £

forAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

forAll n £ = ForAll n £

Type says that forAll can’t be applied at the Grid level (because that would involve
dreaming up #blocks and #threads per block)

forAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

forAll n £ = ForAll n £

ForAll iterates a body (described by higher order abstract syntax) a given number of
times over the resources at level t

iterations independent of each other

forAll :: (t *<=* Block) => EWord32
-> (EWord32 -> Program Thread ())
-> Program t ()

forAll n £ = ForAll n £

ForAll iterates a body (described by higher order abstract syntax) a given number of
times over the resources at level t

iterations independent of each other

t=Thread => sequential
T = Warp, Block => parallel

Obsidian push array

A push array is a length and a filler function

Filler function encodes a loop at level t in the hierarchy

Its argument is a writer function

Push array allows only a bulk request to push all elements via a writer function

When invoked, the filler function creates the loop structure, but it
inlines the code for the writer inside the loop.

A push array with elements computed by f and writer wf corresponds to a loop
for (i in [1,N]) {wf(i,f(i));}

When forced to memory, each invocation of wf would write one memory location
Ali] = (i)

Push and pull arrays

Neither pull nor push arrays are manifest
Both fuse by default.

Both immutable.

Don’t appear in Expression or Program datatypes
Shallow Embedding

See
Svenningsson and Axelsson on combining deep and

shallow embeddings

Argh. Why two types of array??

Concatenation of pull arrays is inefficient.
Introduces conditionals (which can ruin performance)

Concatenation of Push arrays is efficient.
No conditionals.

splitting arrays up and using parts of them is easy using pull
arrays.

Push and Pull arrays seem to have strengths and weaknesses
that complement each other.

Pull good for reading. Push good for writing. Pull -> Push functions common

Back to example

incGridl :: Word32 -> DPull EWord32 -> DPush Grid EWord3?2
incGridl n arr = asGridMap (push . fmap (+1)) (splitUp n arr)

perform :: IO ()
perform =
withCUDA S do
kern <- capture 512 (incGridl 512)

useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
withVector 1024 $ \ o ->
do o <== (1l,kern) <> 1

r <- peekCUDAVector o
lift $§ putStrLn $ show r

perform :: IO ()
perform = threads per block

withCUDA $ do
kern <- capture 512 (incGridl 512)

array elements per block

useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
withVector 1024 $ \ o ->
do o <== (1l,kern) <> 1

r <- peekCUDAVector o
lift $§ putStrLn $ show r

perform :: IO ()
perform =
withCUDA S do
kern <- capture 512 (incGridl 512)

useVector (V.fromList [0..1023 :: Word32]) $ \ i —->
withVector 1024 $ \ o ->
do o <== (1l,kern) <> 1

r <- peekCUDAVector o
lift $§ putStrLn $ show r

*Reduction> perform
[1,2,3,4,5,6,7 ..

gen(.cu

#include <stdint.h>
extern "C" global void genO(uint32 t* input0O, uint32 t noO,
uint32 t* outputl)

uint32 t bid = blockIdx.x;
uint32_t tid threadIdx.x;

for (int b = 0; b < n0 / 5120 / gridDim.x; ++b) {
bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
outputl[bid * 512U + tid] = inputO[bid * 512U + tid] + 1U;
bid = blockIdx.x;
__syncthreads();
}
bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;
if (blockIdx.x < n0 / 512U % gridDim.x) {
outputl[bid * 512U + tid] = inputO[bid * 512U + tid] + 1U;
}
bid = blockIdx.x;
__syncthreads();

gen(.cu

#include <stdint.h>
extern "C" _ global void genO(uint32_t* inputO, uint32_t noO,
uint32 t* outputl)

{
uint32 t bid = blockIdx.x;
uint32_t tid = threadIdx.x;
for (int b = 0; b < n0 / 512U / gridDim.x; ++b) {
bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
outputl[bid * 512U + tid] = inputO[bid * 512U + tid] + 1U;
bid = blockIdx.x;
__syncthreads();
}
bid = gridDi
if (blockIdx.x <
outputl[bid * 512
} Will go around the first loop twice
bid = blockIdx.x; (an example of block virtualisation)
__syncthreads();
}

And zero times through the second loop

withCUDA $§ do
kern <- capture 128 (incGridl 512)

useVector (V.fromList [0..1023 :: Word32]) $ \ i ->
withVector 1024 $ \ o ->
do o <== (1,kern) <> 1i

r <- peekCUDAVector o
lift $§ putStrLn $ show r

#include <stdint.h>
extern "C" _ global__ void genO(uint32_t* inputO, uint32_t noO,
uint32_t* outputl)

uint32_t bid = blockIdx.x;
uint32_t tid threadIdx.x;

for (int b = 0; b < n0 / 5120 / gridDim.x; ++b) {
bid = blockIdx.x * (n0 / 512U / gridDim.x) + b;
for (int i = 0; i < 4; ++i) {
tid = i * 128 + threadIdx.x;
outputl[bid * 512U + tid] = inputO[bid * 512U + tid] + 1U;
}
tid = threadIdx.x;
bid blockIdx.x;
__syncthreads();

}
bid = gridDim.x * (n0 / 512U / gridDim.x) + blockIdx.x;

if (blockIdx.x < n0 / 512U % gridDim.x) {
for (int i = 0; i < 4; ++i) {
tid = i * 128 + threadIdx.x;

outputl[bid * 512U + tid] = inputO[bid * 512U + tid] + 1U;
}
tid = threadIdx.x;
}
bid = blockIdx.x;

__syncthreads();

compute instead of push

#include <stdint.h>
extern "C" __global__ void genO(uint32_t* input0, uint32_t nO,
uint32_t* outputl)
{
__shared__ uint8_t sbase[2048U];
uint32_t bid = blockldx.x;
uint32_t tid = threadldx.x;
uint32_t* arr0 = (uint32_t*) (sbase + 0);

for (intb=0; b<n0/512U / gridDim.x; ++b) {
bid = blockldx.x * (n0 / 512U / gridDim.x) + b;
arrO[tid] = inputO[bid * 512U + tid] + 1U;
__syncthreads();
outputl[bid * 512U + tid] = arrO[tid];
bid = blockldx.x;
__syncthreads();

}

bid = gridDim.x * (n0 / 512U / gridDim.x) + blockldx.x;

if (blockldx.x < n0 /512U % gridDim.x) {
arrO[tid] = inputO[bid * 512U + tid] + 1U;
__syncthreads();
outputl[bid * 512U + tid] = arrO[tid];

}

bid = blockldx.x;

__syncthreads();

Doesn’t make sense in this kernel but does in multistage (ie most) kernels
Point is to have control of memory use

Reduction

-—- generic parallel or sequential reduction

reduce :: (Compute t, Data a)
=> (a => a =-> a)
-> SPull a

-> Program t (SPush t a)
reduce f arr

| len arr == = return $ push arr
| otherwise =
do let (al,a2) = halve arr

arr' <- compute $ push $ zipWith f al a2
reduce f arr'’

Reduction

——- generic parallel or seq

reduce :: (Compute t, Data
=> (a -> a -> a) fine for a commutative operator
-> SPull a

-> Program t (SPush
reduce f arr

| len arr == 1 = return
| otherwise =
do let (al,a2) = halve arr

arr' <- compute $ push $ zipWith f al a2
reduce f arr’

reduce2stage :: Data a
=>Word32
->(a->a->a)
-> SPull a -> Program Block (SPush Block a)
reduce2stage mfarr=do
arr' <- compute S asBlock (fmap body (splitUp m arr))
reduce f arr'
where body a = execWarp (reduce f a)

reduceGrid :: Data a
=>Word32
->Word32
->(a->a->a)
-> DPull a -> DPush Grid a
reduceGrid m n f arr = asGrid S fmap body (splitUp m arr)
where
body a = execBlock (reduce2stage n f a)

coalesce :: ASize 1
=> Word32 -> Pull 1 a -> Pull 1 (Pull Word32 a)
coalesce n arr =
mkPull s $ \i ->
mkPull n $ \j -> arr ! (i + (sizeConv s) * j)

where s = len arr "div" fromIntegral n

Access data by splitting up but also permuting the array (to give good
memory access pattern)

red3 :: Data a
=> Word32
-> (a => a =-> a)
-> Pull Word32 a
-> Program Block (SPush Block a)
red3 cutoff f arr
| len arr == cutoff =
return $ push $ foldl f arr
| otherwise =
do
let (al,a2) = halve arr
arr' <- compute (zipWith f al a2)
red3 cutoff f arr'

red5' :: Data a
=> Word32
-> (a =-> a =-> a)
-> Pull Word32 a
-> Program Block (SPush Block a)

red5' n £ arr =

do arr' <- compute $ asBlockMap (execThread' . segReduce f)
(coalesce n arr)

red3 2 f arr'

red5' :: Data a
=> Word32
-> (a =-> a =-> a)
-> Pull Word32 a
-> Program Block (SPush Block a)

red5' n £ arr =

do arr' <- compute $ asBlockMap (execThread' . segReduce f)
(coalesce n arr)
red3 2 f arr'

Reuse!!

A lot of index manipulation tedium is relieved!

Autotuning springs to mind!!

Seconds

Reduction kernels on varying #elements/block

- | | | | |
- | = red]
el red?2
e red3

= redd
el redS

b= red6
g red7

10!

LLLLLERA!

1

LA |

L1 111l

1

10! !
256 512

| | | | -
2048 4096 8192 16384 32768
#Elements per block

!
1024

Fig. 11. The threads-per-block setting that achieved the best time shown in Figure 10. These
settings are difficult to predict in advance. Kernels that use virtualized threads are highlighted, note
that there are many of these amongst the best selection. Again, elements-per-block varies over the
X axis.

Kernel 256 512 1024 2048 4096 8192 16384 32768

redl 64 128 128 256 256 512 512 na
red2 64 2 64 128 256 512 512 na
red3 64 128 64 128 256 512 512 na
red4 64 64 128 64 64 64 128 512
red5 32 64 64 64 128 256 256 512
red6 32 32 64 64 128 128 256 256
red7 32 32 32 64 128 128 512 128

Seconds

17

Scan on varying #clements

== Obsidian
== Thrust

== Accelerate

16M 32M
#Elements

Fig. 18. The running time of scan algorithms
for larger data swes. The time reported
is the sum of 1000 executions, excluding
data transfer to and from the GPU memory.
These number are collected on an NVIDIA
GTX680. The presented Accelerate numbers
are estimates based on a lower number of
iterations as explained in Section 7.3.

Compilation to CUDA (overview)

Reification Produce a Program AST

Convert Program level datatype to list of
statements

Liveness analysis for arrays in memory
Memory mapping

CUDA code generation (including
virtualisation of threads, warps and blocks)

Compilation to CUDA (overview)

Reification diyce a Program AST

Convert Prof
statements

Liveness anc

Obsidian is quite small

Memory ma Could be a good EDSL to study!!

CUDA code ¢
virtualisatio

Summary |

Key benefit of EDSL is ease of design exploration

Performance is very satisfactory (after parameter exploration)
comparable to Thrust

“Ordinary” benefits of FP are worth a lot here
(parameterisation, reuse, higher order functions etc)

Pull and push arrays a powerful combination

In reality, also need mutable arrays (which are there but need further
development, see Thielemann’s experience with Obsidian and Accelerate)

Providing a warp abstraction is good. CUDA doesn’t do it. But super GPU
programmers are entirely warp oriented!!

Summary I

Flexibility to add and control sequential behaviour is vital to performance
(Thielemann)

Use of types to model the GPU hierarchy interesting!
gives something in between flat and nested data parallelism

constrains the user to programming idioms appropriate to the GPU
similar ideas could be used in other NUMA architectures

Need to adapt to changes in GPUs (becoming more and more general, e.g.
communication between threads in warps via “shuffles”)

What we REALLY need is a layer above Obsidian (plus autotuning)
see spiral.net for inspiring related work

Summary Il

| want a set of combinators with strong algebraic
properties (e.g. for data-independent algorithms like
sorting and scan).

Need something simpler and more restrictive than push
arrays

Array combinators have not been sufficiently studied.

A community is forming See Array’15 with PLDI

The bigger picture

Obsidian is a good (backend) tool for exploring
what is really the heart of the matter:

Understanding how to provide nice abstractions
to the programmer while still gaining
performance from parallel machines (which are
only going to get more and more parallel)

This is compatible with Blelloch’s vision too

We would be happy if any of you wanted to
work on using or developing Obsidian ©

Joel Svensson will be around soon for the
second half of the year

CUDA programming is fun, but Obsidian
programming is even more fun!

