Parallel Functional Programming
Lecture 9
Data Parallelism |

Mary Sheeran

(with thanks to Ben Lippmeier for
borrowed slides)

http://www.cse.chalmers.se/edu/course/pfp

DPH

Parallel arrays [:e:] (which can contain arrays)

DPH

Parallel arrays [:e:] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements

DPH array operations

(1) ::[:a:] > Int->a

sliceP :: [:a:] -> (Int,Int) -> [:a:]

replicateP :: Int ->a -> [:a:]

mapP :: (a->b) -> [:a:] -> [:b:]

ZipP :: [:a:] -> [:b:] -> [:(a,b):]

ZipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]

concatP :: [:[:a:]:] -> [:a:]

concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]

expandP :: [:[:a:]:] -> [:b:] -> [:b:]
combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])

Parallel array comprehensions

[: forceOn pm 1l | p <- ps, isFar len 1 p :]

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: £*(v !': i) | (1,f) <- sv :]
smMul

[: (Int,Float):]:] -> [:Float:] -> Float

[:
smMul sm v sumP [: svMul row v | row <- sm :]

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float
svMul sv v = sumP [: £*(v !': i) | (1,f) <- sv :]
smMul

[: (Int,Float):]:] -> [:Float:] -> Float

[:
smMul sm v sumP [: svMul row v | row <- sm :]

Nested data parallelism
Parallel op (svMul) on each row

Barnes Hut N-body simulation

Reduces cost from O(N”2) to O(N log N)
Uses octree to represent the hierarchical grouping of particles

Particles close to each other are grouped and their centre of gravity (centroid)
Is calculated.

When a particle with which they should interact is sufficiently far away, then the
centroid can be used.

Usually done in 3D. This DPH example is in 2D (and slightly simplified), so uses quad tree.
The Barnes Hut paper is GREAT.

Barnes, Josh, and Hut Piet. "A heirarchical O(N logN) force-calculation algorithm."
Nature. 324. (1986)

http://www.nature.com/nature/journal/v324/n6096/pdf/324446a0.pdf
(Access when on a Chalmers computer)

P3
P1

P2

P7 | Ps

Pa

P8
Po

Ps

Figure 2: Subdivision of area

/0\

c/\ p/> p/>
PAYA U

Pe P17 P8 P9

R TP,

e ST

Having constructed such a tree, the force on any particle p
may be approximated by a simple recursive calculation. Start
at the root cell of the tree, which contains the entire system. Let
I be the length of the cell currently being processed and D the
distance from the cell’s centre-of-mass to p. If I/ D < 6, where
0 is a fixed accuracy parameter ~1, then include the interaction
between this cell and p in the total being accumulated. Other-
wise, resolve the current cell into its eight subcells, and recur-
sively examine each one in turn. The core of the force calculation
routine may be compactly expressed in SCHEME, a dialect of
LISP:

(define (acceleration partigle enmsemdle)
(cond ((singleton? encemble)
(nevton-acceleration particle (the-element ensemble)))
((< (/ (diameter ensemble)
(distance particle (centroid ensemble)))
theta)

(newton-acceleration particle (centroid emseable)))
(else
(reduce sum-vector

(map (lambda (e) (acceleration particle e))

(subdivisions ensemble))))))

Barnes Hut (2D) in DPH

—— Compute cne step of the n-body simulation
oneStep :: [:Particle:] ->

[:Particle:]
oneStep particles = moveParticles particles forces

where
tree = buildTree initialArea particles
forces = calcForces (lengthOf initialArea) tree particles
buildTree :: Area —> [:Particle:] -> Tree
calcForces :: Float ->

Tree —> [:Particle:] -> [:Force:]
moveParticles :: [:Particle:] -> [:Force:] —-> [:Particle:]
lengthOf :: Area —> Float

moveParticles :: [:Particle:] -> [:Force:] -> [:Particle:]

moveParticles ps fs =|zipWithP|moveParticle ps fs
moveParticle :: Particle -> Force -> Particle
moveParticle (Particle { mass = m
, location = loc
, velocity = vel })
force
= Particle { mass = m

, location loc + vel * tTimeStep
, velocity = vel + accel = timeStep }
where
accel = force / m

data Tree = Node Mass Location [:Tree:]
—— Rose tree for spatial decomposition

Node Mass Location [:Tree:]
—— Rose tree for spatial decompc

-

ion

The only way to get parallelism
over sub-trees

data Tree = Node Mass Location [:Tree:]
—— Rose tree for spatial decomposition

—— Perform spatial decomposition and build the tree
buildTree :: Area —-> [:Particle:] -> Tree

buildTree area [: p :] = Node (mass p) (location p) [::]
buildTree area particles = Node m 1 subtrees

where
(m, 1) = calcCentroid subtrees
subtrees = [: buildTree a ps

| a <- splitArea area
let ps = [:p | p <— particles, inArea a p:]

’

, lengthP ps > 0 :]

data Tree = Node Mass Location [:Tree:]
—— Rose tree for spatial decomposition

—— Perform spatial decomposition and build the tree
buildTree :: Area —-> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location -

buildTree area particles = Node m 1 subtrees
where
(m, 1) = calcCentroid subtrees
subtrees = [: buildTree a ps

| a <— splitArea area

4

lengthP ps > 0 :]

’

let ps = [:p | p <— particles, inArea a p:]

Up to 4 areas

data Tree = Node Mass Location [:Tree:]
—— Rose tree for spatial decomposition

—— Perform spatial decomposition and build the tree
buildTree :: Area —-> [:Particle:] -> Tree
buildTree area [: p :] = Node (mass p) (location p) [::]
buildTree area particles = Node m 1 subtrees
where
(m, 1)
subtrees

calcCentroid subtrees

[: buildTree a ps

| a <— splitArea area

, let ps = [:p | p <- pa~ticles, inArea a p:]
, lengthP ps > 0 :]

Tons of parallelism!
1) From recursive calls of
parallel function buildTree
2) From nested parallel arrays

calcForces :: Float —-> Tree —-> [:Particle:] —-> [:Force:]
calcForces len (Node m 1 ts) ps

= let
far_ forces forceOn pm1l | p <- ps, isFar len 1 p :]
near_ps = p | p <- ps, not (isFar len 1 p) :]

near_forces_s
near_forces =

calcForces (len / 2) t near_ps | t <- ts :]
sumForces p_forces
p_forces <- transposeP near_forces_s :]

Il
e e B s B e B |
e se e ww

in
combineP [:isFar len 1 p | p <- ps:] far_forces near_forces

Run Tme

100

100ms

10ms

Performance

Sames-Hut, 1 step, 1 Bread

T T T
Baselne DPH e
New OPH —p—

With Data.Vector .

T

Ow Of Memory
(5000 bodies)

10k

100k

Figure 6. Benchmark Runtime Performance

Summary of example

Nestedness is essential in this example

Feels like just replacing [] by [::] but authors
caution that deciding on parallelisation needs
thought and has influence on communication
needed

Doesn’t yet run faster than using Data.Vector,
but getting there!

Data parallelism

Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is
sequential

those computations don’t need to communicate
parallel computations don’t spark further parallel computations

Regular, Shape-polymorphic, Parallel Arrays in Haskell

Gabriele Keller® Manuel M. T. Chakravarty® Roman Leshchinskiy?
Simon Peyton Jones* Ben Lippmeier’

fComputer Science and Engineering, University of New South Wales *Microsoft Research Ltd, Cambridge
{keller,chak,rl benl}@cse.unsw.edu.au simonpj@microsoft.com

API for purely functional, collective operations over dense,

rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

|deas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can

— combine efficiency and clarity
— focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

terminology

Regular arrays
dense, rectaf note: the arrays are purely \

functional and immutable

shape polym

All elements of an array are
functions wo| demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive
elements on each proc. element

_ /

But things moved on!

Repa from ICFP 2010 had ONE type of array (that could be either
delayed or manifest, like in Obsidian)

A paper from the Haskell’11 showed efficient parallel stencil
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Fancier array type

data Array sh a

= Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
data Region sh a
= Region { regionRange :: Range sh
, regionGen :: Generator sh a }
data Range sh
= RangeAll
| RangeRects { rangeMatch :: sh -> Bool

, rangeRects :: [Rect sh] }
data Rect sh
= Rect sh sh

data CGenerator sh a
= GenManifest { genVector :: Vector a }

| forall cursor.

GenCursored { genMake :: sh -> cursor
, genShift :: sh -> cursor -> cursor
, genLoad 11 cursor -> a }

Figure 5. New Repa Array Types

Fancier array type

data Array sh a

= Array { arrayExtent :: sh
, arrayRegions :: [Region sh a] }
data Region sh a
= Region { regionRange :: Range sh
, regionGen :: Generator sh a }

data Range sh
= RangeAll

| RangeRects { rangeMatch

, rangeRects

data Rect sh
= Rect sh sh

data Generator sh a
= GenManifest { genVector

| forall cursor.
GenCursored { genMake

-

But you need to be a guru to get good performance!

.

Put Array representation into the
type!

The fundamental problem with Repa 1 & 2 is the following: at an
particular point in the code, the programmer typically has a clear
idea of the array representation they desire. For example, it may
consist of three regions, left edge, middle, right edge, each of which
is a delayed array. Although this knowledge is statically known to
the the programmer, it is invisible in the types and only exposed to
the compiler if very aggressive value inlining is used. Moreover, the
programmer’s typeless reasoning can easily fail, leading to massive
performance degradation.

The solution is to expose static information about array repre-
sentation to Haskell's main static reasoning system; its type sys-
tem.

Repa 3

(Haskell’12

Guiding Parallel Array Fusion with Indexed Types

Ben Lippmeier’

"Computer Science and Engineering
University of New South Wales, Australia

{benl,chak keller }@cse.unsw.edu.au

Abstract

We present a refined approach to parallel array fusion that uses
indexed types to specify the internal representation of each array.
Our approach aids the client programmer in reasoning about the
performance of their program in terms of the source code. It also
makes the intermediate code easier to transform at compile-time,
resulting in faster compilation and more reliable runtimes. We
demonstrate how our new approach improves both the clarity and
performance of several end-user written programs, including a fluid
flow solver and an interpolator for volumetric data.

Catepories and Subject Descriptors 10.3.3 [Programming Lan-

Manuel M. T. Chakravarty®

Gabriele Keller’ Simon Peyton Jones?

¥Microsoft Research Ltd
Cambridge, England

{simenpj }@microsoft.com

This second version of doubleZip runs as fast as a hand-written
imperative loop. Unfortunately, it is clutiered with explicit pattern
matching, bang patterns, and use of the force function. This clut-
ter is needed to guide the compiler towards efficient code, but it
obscures the algorithmic meaning of the source program. It also
demands a deeper understanding of the compilation method than
most users will have, and in the next section, we will see that these
changes add an implicit precondition that is not captured in the
function signature. The second major version of the library, Repa 2,
added support for efficient parallel stencil convolution, but at the
same time also increased the level of clutter needed to achieve effi-
cient code [8].

http://www.youtube.com/watch?v=YmZtP11mBho

qguote on previous slide was from this paper

version

| use Repa 3.2.1.1 (which works with the GHC that you get with the current
Haskell platform)

cabal update

cabal install repa-3.2.1.1

cabal install repa-algorithms-3.2.1.1
cabal install bmp-1.2.1.1

cabal install repa-io-3.2.1.1

cabal install repa-examples-3.2.1.1

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html

If you have a later GHC installed, you can use a later Repa, and probably get
better performance.

10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C — Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
* V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

e F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I —Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2

10 Array representations!

e D — Delayed arrays (delayed) §3.1

® C — Cursored arrays (delayed) §4.4

e U — Adaptive unboxed vectors (manifest) §3.1
* V — Boxed vectors (manifest) §4.1

e B — Strict byte arrays (manifest) §4.1

e F — Foreign memory buffers (manifest) §4.1
e P — Partitioned arrays (meta) §4.2

e S — Smallness hints (meta) §5.1.1

e I —Interleave hints (meta) §5.2.1

e X — Undefined arrays (meta) §4.2

But the 18 minute presentation at Haskell’12 makes it all make sense!!
Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho

Type Indexing

data family Array rep sh e

type index giving representation

Type Indexing

data family Array rep sh e

shape

Type Indexing

data family Array rep sh e

element type

map

map
(Shape sh, Source r a) =>
(a -> b) -> Array r sh a -> Array D sh b

map

map
(Shape sh, Source r a) =>
(a -> b) -> Array r sh a -> Array D sh b

map £ arr = case delay arr of ADelayed sh g ->
ADelayed sh (£ . g)

Fusion

Delayed (and cursored) arrays enable fusion that
avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code

example

import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

example

import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

index type
SHAPE
EXTENT

example

import Data.Array.Repa as R

will later see

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

& DIMO=Z7 (scalar)
DIM1 = DIMO :. Int
DIM2 = DIM1 :. Int

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

& DIMO=Z7 (scalar)
DIM1 = DIMO :. Int
DIM2 = DIM1 :. Int

shoc lists

Haskell lists are cons lists
1:2:3:[] isthesame as [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2=Z7:.Int:. Int IS a shape type

Z:i:j readas (i,j) isanindexinto atwo dim. array

more general transpose
(on inner two dimensions)

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e

-> Array D ((sh :. Int) :. Int) e

more general transpose
(on inner two dimensions)
is provided

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

~

This type says an array with at least 2 dimensions.
The function is shape polymorphic

"

more general transpose
(on inner two dimensions)
is provided

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

N

Functions with at-least constraints become a
parallel map over the unspecified dimensions (called
rank generalisation)

Klmportant way to express parallel patterns

more general transpose
(on inner two dimensions)

transpose
:: (Shape sh, Source r e) =>
Array r ((sh :. Int) :. Int) e
-> Array D ((sh :. Int) :. Int) e

~

D stands for delayed array

I

filter?

filter :: (Elt e) => (E -> Bool) -> Array DIM1 e -> Array DIM1 e

can’t be shape polymorphic
the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but
we only deal with rectangular arrays)

Remember

Arrays of type (Array D sh a) or (Array C sh a) are not real arrays. They are represented
as functions that compute each element on demand. You need to

use computeS, computeP, computeUnboxedP and so on to actually evaluate the
elements.

(quote from

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-
Repa.html

which has lots more good advice, including about compiler flags)

Example: sorting

bitonic sequence

iInc (not decreasing)
then
dec (not increasing)

or a cyclic shift of such a sequence

|

Buttertly

iM-

bitonic

B

/
X bitonic
bitoni
tonic L

|

onic

uttertly

\4
Il

Making a recursive sorter (D&C)

Make a bitonic sequence using two
half-size sorters

gy

[

QL
iy

S

— wnn (q

Batcher’s sorter (bitonic)

bitonic merger

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)
dee £ g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

where
ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)

where
a=arr ! (sh :. i)
b=arr ! (sh :. (i xor s2))

s2 = (1::Int) "shiftl s

assume input array has length a power of 2, s >0 in this and
later functions

bitonicMerge

(Monad m, Shape sh) =>

Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)
bitonicMerge n = compose [dee max min (n-i) | i <- [1..n]]

compose :: Monad m => [a -> m a]
compose [] arr = return arr
compose (f:fs) arr
= do
arrl <- f£ arr
compose fs arrl

-> a ->ma

tmerge

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)
-> Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)
vee £ g s arr = let (sh :. len)
= extent arr in computeUnboxedP $ fromFunction (sh :. len) ixf
where
ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)
where
a = arr ! (sh :. 1ix)
b = arr ! (sh :. newix)

newix = flipLSBsTo s 1x

tmerge

tmerge
(Monad m, Shape sh) =>
Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | 1 <= [2..n]]

tsort
(Monad m, Shape sh) =>
Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

tsort n = compose [tmerge i | i <- [1l..n]]

Performance is decent!

Initial benchmarking for 2220 Ints

Around 880ms on 4 cores on this laptop (and down to 633 ms using —ga —qg flags wit
this year’s Repa)

Compares to 1.77 seconds for Data.List.sort (which is segential)
Still slower than Persson’s non-entry from last year

about a factor of 2, which is about what you would
expect when comparing Batcher’s bitonic sort to quicksort

Comments

Should be very scalable
Can probably be sped up! Need to add sequentialness ©

Similar approach might greatly speed up the FFT in repa-examples
(and | found a guy running an FFT in Haskell competition)

| wonder if more standard higher order functions (without bit hackery)
could be made to work well (= fast) (zipWith, interleave etc.)

Note that this approach turned a nested algorithm into a flat one
Did you notice that | didn’t mention scan ?? (Repa needs one!)

Study examples written by the master

transpose 2D array in parallel

transpose2P
:: Monad m
=> Array U DIM2 Double
-> m (Array U DIM2 Double)

transpose2P arr
= arr "deepSegArray
do computeUnboxedP
$ unsafeBackpermute new extent swap arr
where swap (Z2 :. 1 :. 3j) Z :. 3J :. 1
new_extent swap (extent arr)

|
™M
?l_ -
>
=
o
el

Matrix Multiplication ~ (A.B)ij =

Qii|d@i1z2(4ais Ci11/C12
bii|bi2
Qz21|Qz22|Az3 — C21(C22
* |b2i|b22| =
Qszi1|A3z2|as3 C31|(C32
b31|bs2
asi|aszaas C41|Ca2

slide from Lippmeier’s ICFP 2010 talk on Repa

mmultP

Monad m

=> Array U DIM2 Double

-> Array U DIM2 Double
-> m (Array U DIM2 Double)

mmultP arr brr
= [arr, brr] "deepSegArrays

do

trr <- transpose2P brr
let (Z :. hl :.) = extent arr
let (2 :. _ :. w2) = extent brr
computeP

$ fromFunction (Z :. hl :. w2)

$ \ix -> R.sumAllS
$ R.zipWith (*)
(unsafeSlice arr (Any
(unsafeSlice trr (Any

(row ix)
(col ix)

All))
All))

stackoverflow

is your friend
See for example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rg=1

Conclusions

Based on DPH technology
Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled (see lecture later by Nick
Frolov)

Array representations for parallel functional programming is an
important, fun and frustrating research topic ©

-

Feel free to mail questions

MAKE USE of Nick! He knows a lot and is happy to
guide you.

