Parallel Functional Programming
Lecture 2

Mary Sheeran

(with thanks to Simon Marlow for use of slides)

http://www.cse.chalmers.se/edu/course/pfp

Course reps

Could | have some volunteers (from Chalmers,
GU) ?

(Seems better than using randomly generated
names)

Remember nfib

nfib :: Integer -> Integer
nfibn | nk2 =1
nfib n = nfib (n-1) + nfib (n-2) + 1

e A trivial function that returns the number of
calls made—and makes a very large number!

10 177
20 21891
25 242785

30 2692537

Sequential

Actiity

HECO

sfib 40

Explicit Parallelism

par Xy

* “Spark” x in parallel with computing y

— (and return y)

* The run-time system may convert a spark into
a parallel task—or it may not

e Starting a task is cheap, but not free

Explicit Parallelism

X par y

Explicit sequencing

pPseq X'y

e Evaluate x before y (and return y)

* Used to ensure we get the right evaluation
order

Explicit sequencing

X pseq y

* Binds more tightly than par

Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer
rfibn | n < 2 1
rfib n = nfl par nf2 "pseqgq nf2 + nfl + 1
where nfl = rfib (n-1)
nf2 = rfib (n-2)

Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer
rfibn | n< 2 =1
rfib n = nfl par (nf2 pseqg nf2 + nfl + 1)
where nfl = rfib (n-1)
nf2 = rfib (n-2)

* Evaluate nfl in parallel with (Evaluate nf2
before ...)

Looks promsing

Actiity

HECO

HEC1

HEC 2

HEC3

What’s happening?

S ./NF +RTS -N4 -s

Hah

331160281

SPARKS: 165633686 (105 converted, 0 overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT time 0.00s (0.00s elapsed)
MUT time 2.31s (1.98s elapsed)
GC time 7.58s (0.51s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 9.89s (2.49s elapsed)

Hah

331160281

SPARKS: 165633686 (105 converted, 0 overflowed, 0 dud, 165098698 GC'd, 534883 fizzled)

INIT time 0.00s (&
MUT time 2.31s (converted = turned into

GC time 7.58s (0. useful parallelism

EXIT time 0.00s (O.
Total time 9.89s (2.4S

Controlling Granularity

* Let’s use a threshold for going sequential, t

tfib :: Integer -> Integer -> Integer
tfib t n | n < t = sfib n
tfib t n = nfl "par nf2 pseq nfl + nf2 + 1
where nfl = tfib t (n-1)
nf2 = tfib t (n-2)

Better

tfib 32 40 gives

SPARKS: 88 (13 converted, 0 overflowed, 0 dud, 0 GC'd, 75 fizzled)

INIT time 0.00s (0.01s elapsed)
MUT time 2.42s (1.36s elapsed)
GC time 3.04s (0.04s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 5.47s (1.41s elapsed)

What are we controlling?

The division of the work into possible parallel tasks (par) including
choosing size of tasks

GHC runtime takes care of choosing which sparks to actually evaluate
in parallel and of distribution

Need also to control order of evaluation (pseq) and degree of
evaluation

Dynamic behaviour is the term used for how a pure function gets
partitioned, distributed and run

Remember, this is deterministic parallelism. The answer is always the
same!

positive so far (par and pseq)

Don’t need to
express communication
express synchronisation
deal with threads explicitly

BUT

Original code + par + pseq + rnf etc.
can be opaque

Sepa rate concerns

Algorithm

Sepa rate concerns

Evaluation Strategy

Algorithm

Evaluation Strategies

express dynamic behaviour independent of the
algorithm

provide abstractions above par and pseq

are modular and compositional
(they are ordinary higher order functions)

can capture patterns of parallelism

P

Algorithm + Strateqy = Parallel

PW.TRINDER

Depariment of Compuiing Science. Universiiy of Glasgow. Glasgow.

I HANMAMOND

apers

1STI

Division of Compuiing Scienice. Universily of Si Andrews. Si Andrws.

H-W. LOIDL AND S.L. PEYTON JONES |

Deparimeni of Compuiing Science. Universiiy of Glasgow. Glasgow.

Seq no more: Betler Strategles for

Simon Mariow Patrick Maier
Microaolt Rescech, Cambridge, UK Herioe- Watt Uniw enity, Edinbunph, UK
mrmormar@micoecft com FMaear@hw. ac uk

Mustafz K Aswad

UK

Parallel Haskell

Hares-Wolfgang Loidl
Heriot Watt Unsenaty, Edisbamgh UK
HW. Loid®hw 3z uk

Phil Trinder

Heriot- Watt Unsendty, Bdirbamnh, UK Heret- Watt Univerdty, Ednbengh, UK

mika 100hw ac uk

PW Trnder®hw 30 ok

JFP 1998

Haskell’10

Papers

Algorithm + Strateqy = PofEEESEUNNIEIEES
e P'?,\ ‘__' R,_'_‘\.')".‘,R o richer set of parallelism combinators
cparimment of ('L’l”}’ll!“l_f.] .5. icnce. ‘IlH'i rsity of (IJ!IS.
K. HAMMOND Better specs (evaluation or.der).
Division of Compuiing Scienice. Universily of 51 Andres A”OWS new forms Of Coordlnatlon
TRV ENIVERY RGNS ceneric regular strategies over data
Depariment of Compuiing Scicnice.
structures
speculative parellelism
monads everywhere ©

Uniiversity of Glas

Presentation is about New Strategies

Microaoft Rescech, Cambridge, UK Pe ity, H Hlerict Watt Unserndty, Bdisbamgh, UK
mrormar@micrcecft com)) HW Load®hw acuk

Mustafa - Phil Trinder

" Herce- Watt Univerdty, Ednbanh, UK
mika100hw ac uk PW Trnde@hw 3z ok

The Eval monad

import Control.Parallel.Strategies

data Eval a
instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a
Eval is pure

Just for expressing sequencing between rpar/rseq — nothing
more

Compositional — larger Eval sequences can be built by
composing smaller ones using monad combinators

Internal workings of Eval are very simple (see Haskell
Symposium 2010 paper)

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

What does rpar actually do?

X <= rpar e

rpar creates a spark by writing an entry in the spark pool
— rparis very cheap! (not a thread)

the spark pool is a circular buffer

when a processor has nothing to do, it tries to remove an
entry from its own spark pool, or steal an entry from
another spark pool (work stealing)

when a spark is found, it is evaluated
The spark pool can be full — watch out for spark overflow!

- II Spark Pool

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

Expressing evaluation order

gfib :: Integer -> Integer

gfibn | n< 2 =1

gfib n = runEval $ do
nfl <- rpar (gfib (n-1))
nf2 <- rseq (gfib (n-2))
return (nfl + nf2 + 1)

Expressing evaluation order

gfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n runEval $ do
nfl <- rpar
nf2 <- rseq (gqfib
return (nfl + nf2

'dothh
spark nfib (n-1)

"My argument could be evaluated in parallel”

Expressing evaluation order

gfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n runEval $ do
nfl <- rpar
nf2 <- rseq (gqfib
return (nfl + nf2

'dothB
spark nfib (n-1)

"My argument could be evaluated in parallel”

Remember that the argument should be a thunk!

Expressing evaluation order

qgfib :: Integer -> Integer
gfibn | n< 2 =1
qfib n = runEval $ do
nfl <- rpar (gfib (n-1))
nf2 <- rseq (gfib (n-2
return (nfl + and this
Evaluate qgfib(n-2)
and wait for

result

"Evaluate my argument and wait for the result."

Expressing evaluation order

gfib :: Integer -> Integer

gfibn | n< 2 =1

gfib n = runEval §$ do
nfl <- rpar (gfib (n-1))
nf2 <- rseq (gfib (n-2))
return (nfl + nf2 + 1)

Expressing evaluation order

qgfib :: Integer -> Integer

gfibn | n< 2 =1

qfib n = runEval $ do
nfl ~<- rpar (gfib (n-1))
nf2 <- aq (gfib (n-2))
return (n

pull the answer

out of the
monad

runEval S do
a <- rpar (f x)
b <- rpar (fy)
return (a,b)

runEval S do
a <- rpar (f x)
b <-rpar (fy)
return (a,b)

return

runEval S do
a <- rpar (f x)
b <-rseq (fy)
return (a,b)

time

return

runEval S do
a <- rpar (f x)
b <-rseq (fy)
return (a,b)

Not completely satisfactory
Unlikely to know which one to

wait for

N

time

return

runEval S do
a <- rpar (f x)
b <-rseq (fy)
rseq a
return (a,b)

time

return

runEval S do
a <- rpar (f x)
b <-rseq (fy)
rseq a
return (a,b)

Choice between rpar/rpar and

rpar/rseq/rseq will depend on
circumstances (see PCPH ch. 2)

return

What do we have?

The Eval monad raises the level of abstraction for pseq and par;
it makes fragments of evaluation order first class, and lets us
compose them together. We should think of the Eval monad as
an Embedded Domain-Specific Language (EDSL) for expressing
evaluation order, embedding a little evaluation-order
constrained language inside Haskell, which does

not have a strongly-defined evaluation order.

(from Haskell 10 paper)

parallel map

pMap :: (a -> b) -> [a] -> Eval [Db]
pMap £ [] = return []
pMap £ (a:as) = do

b <- rpar (f a)

bs <- pMap f as

return (b:bs)

HECO

HEC 1

HEC 2

HEC3

Using our pMap

Os 50ms 0.1s 0.15s 0.2s 0.3s 0.35s 04s

I PO R SR SR NN SN S SN | l U R SR SR NN S S SN | l PR R SR SR NN S SN SN | l PR R SR SR NN S S SN | l T

L T L e N L SR)
II‘I.I I

foo :: Integer -> Integer
foo = \a -> sum [1 .. a]

print $ sum $ runEval $§ (parMap foo (reverse [1..10000]))

SPARKS: 10000 (8194 converted, 1806 overflowed, 0 dud, 0 GC'd, O fizzled)

Actiity

HECO

HEC 1

HEC 2

HEC3

print $ sum $ runEval $§ (parMap foo

Os 50ms 0.15s 0.3s 0.35s 04s

l [SR TN SR N SR S S | I [S N | [I | I [SN TN SR NN SR SN SN | I L1

| |

Using our pMap

i
n

foo :: Integer -> Integer
foo = \a -> sum [1 .. a]

raverse [1l..10000]))

GC'd, O fizzled)

SPARKS{10000 |8194 converted, 1) il 106 =

length of list

parallel map

+ Captures a pattern of parallelism

+ good to do this for standard higher order function like map
+ can easily do this for other standard sequential patterns

BUT

- had to write a new version of map

- mixes algorithm and dynamic behaviour

Evaluation Strategies

(U

Raise level of abstraction

Encapsulate parallel programming idioms as
reusable components that can be composed

Strategy (as of 2010)

type Strategy a = a -> Eval a

function
evaluates its input to some degree

traverses its argument and uses rpar and rseq to express dynamic
behaviour / sparking

returns an equivalent value in the Eval monad

using

using :: a -> Strateqgy a -> a

X using strat = runEval (strat x)

Program typically applies the strategy to a structure and then uses the returned value,
discarding the original one (which is why the value had better be equivalent)

An almost identity function that does some evaluation and expresses how that can
be parallelised

Basic strategies

rO0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = X par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strateqgy a
rdeepseq x = rnf x "pseq return x

Basic strategies

r0 :: Strategy a NO evaluation
r0 x = retur

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x "pseq return x

Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = X par return x

rseq :: Strategy a
rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x "pseq return x

Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = X par return x

evaluate x

to WHNF
rseq :: Strategy a

rseq x = x pseq return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x "pseq return x

Basic strategies

r0 :: Strategy a
r0 x = return x

rpar :: Strategy a
rpar x = x par return x

rseq :: Strategy a
rseq x = x pseq return x

fully evaluate x
rdeepseq :: NFData =

rdeepseq x = rnf x pseq ret

evallist

evallist :: Strategy a -> Strateqgy [a]

evallList s [] = return []

evallist s (x:xs) = do x’' <- s x
xs’ <- evallist s xs

return (x’ :xs’)

evallList

evallList :: Strategy a -> Strategy [a]
evallList s [] return []
evallList s (x: do x’ <- s X

Takes a Strategy on a and returns a Strategy

on lists of a
Building strategies from smaller ones

parList

evallist :: Strategy a -> Strateqgy [a]
evallList s [] = return []
evallist s (x:xs) = do x’' <- s x
xs’ <- evallist s xs
return (x’ :xs’)

parList :: Strategy a -> Strategy [a]
parList s = evallist (rpar "dot s)

parList

evallist :: Strategy a -> Strateqgy [a]
evallList s [] = return []
evallist s (x:xs) = do x’' <- s x

xs’ <- evallist s xs
return (x’ :xs’)

parList :: Strategy a -> Strategy [a]
parList s = evallist (rpar "dot s)

dot
s2

Strategy a -> Strategy a -> Strategy a
‘dot' s1 = s2 . runEval . sl

In reality

evallist :: Strategy a -> Strategy [a]
evallist = evalTraversable

parlist :: Strategy a -> Strategy [a]
parlList = parTraversable

In reality

evallList :: Strategy a -> Strategy [a]
evallList = eva aversable

parList
parlList

The equivalent of evallist and of parList are available for many
data structures (Traversable). So defining parX for many X

is really easy

=> generic strategies for data-oriented parallelism

another list strategy

parListSplitAt :: Int -> Strategy [a] -> Strategy [a]
-> Strategy [a]

parListSplitAt n stratlL stratR

ar
n P

stratlL stratR

How do we use a Strategy?

type Strategy a = a -> Eval a
We could just use runEval
But this is better:
X using s = runteval (s x)
e.g.
Why better? Because we have a “law”:
— X UsIng s = X

— We can insert or delete “"using” s” without changing
the semantics of the program

Is that really true?

* Well, not entirely.

1. It relies on Strategies returning “the same value”
(identity-safety)
— Strategies from the library obey this property
— Be careful when writing your own Strategies
2. x'using s might do more evaluation than just x.

— Sothe program with x ‘using’ s might be | , but the
program with just x might have a value

* if identity-safety holds, adding using cannot make the
program produce a different result (other than |)

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

parListChunk n strat
n

OO -

evallList strat

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

Before

print $ sum $§ runEval $ parMap foo (reverse [1..10000])
Now

print $ sum $
(map foo (reverse [1..10000]) "using parListChunk 50 rdeepseq)

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strateqgy [a]

Before

Remember not to be a control freak, though.
22BN LL) Generating plenty of sparks gives the
runtime the freedom it needs to make good

Now choices (=> Dynamic partitioning for free)

print $ sum $

(map foo (reverse [1, using parListChunk 50 rdeepseq)

SPARKS: 200 (200 converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)

using is not always what we need

* Trying to pull apart algorithm and
coordination in gfib (from earlier) doesn’t

really give a satisfactory answer (see Haskell
10 paper)

(If the worst comes to the worst, one can get

explict control of threads etc. in concurrent
Haskell, but determinism is lost...)

Divide and conquer

Capturing patterns of parallel computation is a
major strong point of strategies

D&C is a typical example (see also parBuffer,
parallel pipelines etc.)

divCong :: (a -> b) function on base cases
-> a input
-> (a -> Bool) par threshold reached?
-> (b -> b -> b) combine
-> (a -> Maybe (a,a)) divide

-> b result

Divide and Conquer

divConq f arg threshold combine divide = go arg
where

go arg =
case divide arg of
Nothing -> f arg
Just (10,r0) -> combine 11 rl ‘using' strat
where
11 = go 10
rl = go r0

strat x = do r 11; r rl; return x
where r | threshold arg = rseq
| otherwise = rpar

Separates algorithm and strategy
A first inkling that one can probably do interesting things by programming with
strategies

Skeletons

* encode fixed set of common coordination patterns
and provide efficient parallel implementations (Cole,
1989)

* Popular in both functional and non-functional
languages. See particularly Eden (Loogen et al, 2005)

A difference: one can / should roll ones own strategies

+

+

+

+

+

Strategies: summary

elegant redesign by Marlow et al (Haskell 10)

better separation of concerns

Laziness is essential for modularity

generic strategies for (Traversable) data structures
Marlow’s book contain a nice kmeans example. Read it!

Having to think so much about evaluation order is worrying!
Laziness is not only good here. (Cue the Par Monad Lecture!)

Strategies: summary

Evaluation Strategy

Algorithm

Better visualisation

Better visualisation

Better visualisation

Simon Marlow’s landscape for parallel
Haskell

e Parallel
— par/pseq @1
Strategies €2
Par Monad €3
Repa 4

Accelerate Simon

DPH Ha)(l Marlow
e Concurrent lecture ©

— forklO
MVar
STM
async
Cloud Haskell

In the meantime

Do exercise 1 (not graded)
Read papers and PCPH
Start on Lab A (due midnight April 6)
Note Nick’s office hours
(room 5461, wed 13-14 and fri 13-14)
Use him! He is your best resource.

