Behavior Driven
Development (BDD)

Pavel Rabetski

Volvo Group Telematics

Dynafleet Online Volvo Truck Corporation T v

Cumensy kgged on 89 Matsas Fleet vaer ENG Nilsecn e Change Pas
1S FOA TEST

Postions $¢ last member of hours CEIC
% e ¥
Poteve 0 ®) Number of last poaions @0 v
TELEMATARIGEOD1 11 | .
i, T X \ \ m]
EI Tedornase 72 mﬁllclod »)
! Tolornancs 7 : . \ Svaldv Teeperncd O L
QI \ From 150115 1330
Asmundinp
¢ Teckemators To wons 13X
e , Buriered
Savce mcraght s
farum ke s
e Ganlose Kivioge
" Furvlund Loberod
Stecdose \ 5
Mk » [ie4]
e » Gentofte [5s |
megle Smorumnndre = Sobeed
Baterp \ \
Sodra Sanddy Harlosas
oTIRSND.
NORAL 880
o o e
m
y 4N Copenhagen .
et =, \ VALBY fAMAGER [AST sl Daltyy
dehiene N S KoRpNeLiN § y]
L T503UuD,,.Erengpr : 9 Stalfaesionp vy
¢ — m wala
Genarp

|1 viene e Oriver actwey

Asdersity

1 O § I et Tarws of U

Agenda

Introduction to BDD
Cucumber BDD framework
Live demo

Pros/cons of BDD
Questions?

Introduction to BDD

Introduction to BDD

Test Driven Development

Dan North

Introduction to BDD

public class TestJAccount {

@Test
public void testWithdraw(){
//e..

¥

@Test
public void testWithdrawlWithException(){
//...

h
h

Introduction to BDD

agiledox > public class MoneyWithdrawTest {

@Test
public void testSuccessWhenEnoughMoneyOnAccount(){
[]..

¥

@Test
public void testFailsWhenLackOfMoneyOnAccount(){
/...

h
¥

MoneyWithdraw
- success when enough money on account
- fails when lack of money on account

-

Introduction to BDD

Behavior Driven Development

Introduction to BDD

| want ...

Tester

If | click this
button then ...

L~

Developer

i

function X(){
return Y;
}

V

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

Introduction to BDD

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

Introduction to BDD

Test scripts

Tester

Application
code
Developer

s

I

Ubiquitous
requirements
descriptio

i

Introduction to BDD

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

Introduction to BDD

Behavior Driven Development

(how we write and test requirements)

Introduction to BDD

Story (feature):

As a [role] | want [feature] so that [benefit]

Example: As a customer | want to withdraw money from an ATM so that |
don’t have to go to the bank

Introduction to BDD

Story acceptance criteria (scenario):

Given [initial context] when [event] then [outcomes]

Example: Given there is enough money on my account when | make a
withdrawal then | get the expected amount of money from the ATM

Cucumber BDD framework

Cucumber BDD framework

Test runner (JUnit)
Feature I
files |_>
Cucumber Test scripts
Translatio
into code

SUT

Cucumber: Gherkin logic

Gherkin logic

Feature: Withdraw money
In order to avoid going to the bank
As a customer
| want to withdraw money from an ATM

Scenario: Withdraw less money than the account has
Given there is enough money on my account
When | make a withdrawal
Then | get the expected amount of money from the ATM
And receipt is printed

Cucumber: parametrization

Gherkin logic

Scenario: Withdraw less money ... Scenario: Withdraw money from the account
Given | have 200 SEK on my account Given | have <balance> SEK on my account
When | withdraw 100 SEK When | withdraw <withdraw> SEK
Then | get 100 SEK from the ATM Then | get <received> SEK from the ATM

Scenario: Withdraw more money ... Examples:

Given | have 50 SEK on my account | balance| withdraw | received |
When | withdraw 100 SEK | 200 | 100 | 100 |

Then | get 0 SEK from the ATM | 50] 100 | O |

Cucumber: annotations

Gherkin logic

@prod
Scenario: Withdraw less money ...

Given | have 200 SEK on my account
When | withdraw 100 SEK
Then | get 100 SEK from the ATM

@test

Scenario: Withdraw more money ...
Given | have 50 SEK on my account
When | withdraw 100 SEK
Then | get 0 SEK from the ATM

BDD for complex systems

Test system
; Testrunner :
BDD Framework Feature files
Web driver
v
=) Browser
O
SUT

Live demo: OEM portal

Live demo: ATM

Pros/cons of BDD

e Level of abstraction for steps?
e Becomes complex for complex systems
e Lack of tool support

P.S. BDD in a context of FSM

Given | have 200 SEK on my account when | withdraw 100 SEK then |
get 100 SEK from the ATM

When

[x <= balance]
give x money
{balance :=balance - X

Given

X - amount of money to withdraw

balance - amount of money on the account

[x > balance]
show error message

Questions?

References

Cucumber framework:

https://cucumber.io/

Gherkin language:

http://docs.behat.org/en/latest/guides/1.gherkin.html

Dan North about BDD:

http://dannorth.net/introducing-bdd/

How BDD can be misused:
https://cucumber.io/blog/2014/03/03/the-worlds-most-misunderstood-collaboration-tool

https://cucumber.io/
https://cucumber.io/
http://docs.behat.org/en/latest/guides/1.gherkin.html
http://docs.behat.org/en/latest/guides/1.gherkin.html
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
https://cucumber.io/blog/2014/03/03/the-worlds-most-misunderstood-collaboration-tool
https://cucumber.io/blog/2014/03/03/the-worlds-most-misunderstood-collaboration-tool

