Programming Language Technology

Exam, 6 April 2016 at 08:30 — 12:30 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150,
TIN321 and DIT229/230.
Teacher: Fredrik Lindblad, will visit around 09:30 and 11:00.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs in a C-like imperative language: A program is a list of
statements. Statement constructs are:

e if statements with non-optional else branch.

e block statements (lists of statements surrounded by curly braces)

e expression statements (E;)
Expression constructs are:
identifiers/variables
integer literals
assignments of identifiers (x = E)
addition (E + F)

e multiplication (E * F)
Operator precedences and associativity should follow the C standard. You can
use the standard BNFC categories Integer and Ident as well as list short-
hands, and terminator, separator and coercions rules. (10p)

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

if (b) {x =y +5 * z; } else x = 0;

in the grammar that you wrote in question 1. In the parse tree show the
coercions explicitly. (10p)

2

Exp

Expl

Exp2

Exp3

Integer

Question 3 (Typing and evaluation):

A. Write standard typing rules or syntax-directed type-checking code (or
pseudocode) for the expression constructs (5 constructs) of the grammar
in question 1. The variable context must be made explicit. (5p)

B. Write big-step operational semantic rules or syntax-directed interpretation
code (or pseudocode) for the expression constructs of the grammar in
question 1. The environment must be made explicit. (5p)

Question 4 (Regular expressions):

A. Write a regular expression the recognizes the following language (and only
this): A string in the language is a sequence of tokens separated by one
or more space-characters. A token is either of these two forms:

e Identifier: Any letter (a-z or A-Z) followed by any number of char-
acters which are either a letter or a digit.

e String literal: A double quote (), followed by any sequence of char-
acters except double quote, followed by a double quote.

Do not use any short-hand regular expression constructs for letters and
digits. You may refer to char as a short-hand for any character and - for
which A - B represents the characters in A but not i B. (5p)

SOLUTION:
eps |
((((IlAlll..Illzlllllall .'lllzll)
(Ilolll ..IllglllllAlll..lllzlllllalll.' |"Z“)*) |

()IIJ (char - JII))* ;n)))
(3 Y oy

(((IlAlll'.|l|Z|l|l|all|.. llzll)
(IlOlll..lllgﬂlllAlll.' |llZ|l|lla|l . Ilzll)*) |
(7") (ChaI‘ —)ll’)*)ll)))
) %)

B. Write a deterministic finite-state automaton (DFA) for the same language
as in part A. (5p)

SOLUTION:

Question 5 (Compilation):

A. Write compilation schemes for each of the constructs (statement and ex-
pression, 8 in total) of the grammar in question 1. It is not necessary to
remember exactly the names of the JVM instructions — only what argu-
ments they take and how they work. (6p)

B. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part A. (4p)

Question 6 (Functional languages): Show the big-step operational seman-
tics rules (not as code) for a functional language with the expression constructs
function application, A-abstraction, variables, addition and multiplication. The
evaluation strategy should be call-by-value. Use closures and explicit environ-
ment. (6p)

Show the derivation tree (using your operational semantics) of the evaluation
of the expression

(\f >x+fx) \y >xx*y)

in the environment {x := 3}. (4p)

