
Programming Language Technology

Exam, 6 April 2016 at 08:30 – 12:30 in M

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150,
TIN321 and DIT229/230.
Teacher: Fredrik Lindblad, will visit around 09:30 and 11:00.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs in a C-like imperative language: A program is a list of
statements. Statement constructs are:
• if statements with non-optional else branch.
• block statements (lists of statements surrounded by curly braces)
• expression statements (E;)

Expression constructs are:
• identifiers/variables
• integer literals
• assignments of identifiers (x = E)
• addition (E + F)
• multiplication (E * F)

Operator precedences and associativity should follow the C standard. You can
use the standard BNFC categories Integer and Ident as well as list short-
hands, and terminator, separator and coercions rules. (10p)

1

SOLUTION:

PStms. Prg ::= [Stm] ;

terminator Stm "" ;

SIf. Stm ::= "if" "(" Exp ")" Stm "else" Stm ;

SBlock. Stm ::= "{" [Stm] "}" ;

SExp. Stm ::= Exp ";" ;

EId. Exp3 ::= Ident ;

EInt. Exp3 ::= Integer ;

EMul. Exp2 ::= Exp2 "*" Exp3 ;

EAdd. Exp1 ::= Exp1 "+" Exp2 ;

EAss. Exp ::= Ident "=" Exp ;

coercions Exp 3 ;

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

if (b) { x = y + 5 * z; } else x = 0;

in the grammar that you wrote in question 1. In the parse tree show the
coercions explicitly. (10p)

SOLUTION: Parse tree:

2

Stm

if (

Exp

Exp1

Exp2

Exp3

Ident

b)

Stm

{

[Stm]

Stm

Exp

Ident

x =

Exp

Exp1

Exp1

Exp2

Exp3

Ident

y +

Exp2

Exp2

Exp3

Integer

5 *

Exp3

Ident

z ; } else

Stm

Exp

Ident

x =

Exp

Exp1

Exp2

Exp3

Integer

0 ;

Abstract syntax tree:

3

SIf

EId

b

SBlock

ListCons

SExp

EAss

x EAdd

EId

y

EMul

EInt

5

EId

z

ListNil

SExp

EAss

x EInt

0

4

Question 3 (Typing and evaluation):

A. Write standard typing rules or syntax-directed type-checking code (or
pseudocode) for the expression constructs (5 constructs) of the grammar
in question 1. The variable context must be made explicit. (5p)

SOLUTION:

x : T ∈ Γ

Γ ` x : T

Γ ` i : int

x : T ∈ Γ Γ ` e : T

Γ ` x = e : T

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ∗ e2 : int

B. Write big-step operational semantic rules or syntax-directed interpretation
code (or pseudocode) for the expression constructs of the grammar in
question 1. The environment must be made explicit. (5p)

SOLUTION:

x := v ∈ γ
γ ` x ⇓ 〈v, γ〉

γ ` i ⇓ 〈i, γ〉

γ ` e ⇓ 〈v, γ′〉
γ ` x = e ⇓ 〈v, γ′(x := v)〉

γ ` e1 ⇓ 〈v1, γ′〉 γ′ ` e2 ⇓ 〈v2, γ′′〉
γ ` e1 + e2 ⇓ 〈v1 + v2, γ′′〉

γ ` e1 ⇓ 〈v1, γ′〉 γ′ ` e2 ⇓ 〈v2, γ′′〉
γ ` e1 ∗ e2 ⇓ 〈v1 ∗ v2, γ′′〉

5

Question 4 (Regular expressions):

A. Write a regular expression the recognizes the following language (and only
this): A string in the language is a sequence of tokens separated by one
or more space-characters. A token is either of these two forms:

• Identifier: Any letter (a-z or A-Z) followed by any number of char-
acters which are either a letter or a digit.

• String literal: A double quote (”), followed by any sequence of char-
acters except double quote, followed by a double quote.

Do not use any short-hand regular expression constructs for letters and
digits. You may refer to char as a short-hand for any character and - for
which A - B represents the characters in A but not i B. (5p)

SOLUTION:

eps |

(((("A"|..|"Z"|"a"|..|"z")

("0"|..|"9"|"A"|..|"Z"|"a"|..|"z")*) |

(’"’ (char - ’"’)* ’"’))

(’ ’ ’ ’*

((("A"|..|"Z"|"a"|..|"z")

("0"|..|"9"|"A"|..|"Z"|"a"|..|"z")*) |

(’"’ (char - ’"’)* ’"’))

)*)

B. Write a deterministic finite-state automaton (DFA) for the same language
as in part A. (5p)

SOLUTION:

6

start

"

[A..Za..z]

char - "

"

[0..9A..Za..z]

[A..Za..z]

"

7

Question 5 (Compilation):

A. Write compilation schemes for each of the constructs (statement and ex-
pression, 8 in total) of the grammar in question 1. It is not necessary to
remember exactly the names of the JVM instructions – only what argu-
ments they take and how they work. (6p)

SOLUTION:

compile(if (exp) stm1 else stm2) :

FALSE := newLabel()

TRUE := newLabel()

compile(exp)

emit(ifeq FALSE)

compile(stm1)

emit(goto TRUE)

emit(FALSE:)

compile(stm2)

emit(TRUE:)

compile({stms}) :

newBlock()

foreach stm : stms

compile(stm)

exitBlock()

compile(exp;) :

compile(exp)

emit(pop)

compile(x) :

emit(iload lookup(x))

compile(i) :

emit(ldc i)

compile(x = exp) :

compile(exp)

emit(dup)

emit(istore lookup(x))

compile(exp1 + exp2) :

compile(exp1)

compile(exp2)

emit(iadd)

8

compile(exp1 * exp2) :

compile(exp1)

compile(exp2)

emit(imul)

B. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part A. (4p)

SOLUTION: For each command, we give a transition (P, V, S) →
(P ′, V ′, S′) from old program counter P to its new value P ′, old vari-
able store V to new store V ′, and old stack state S to new stack state
S′. Stack S.v shall mean that the top value on the stack is v, the rest
is S. Jump targets L are used as instruction addresses, and P + 1 is the
instruction address following P .

instruction state before state after
goto L (P, V, S) → (L, V, S)
ifeq L (P, V, S.v) → (L, V, S) if v = 0
ifeq L (P, V, S.v) → (P + 1, V, S) if v 6= 0
iload a (P, V, S) → (P + 1, V, S.V (a))
istore a (P, V, S.v) → (P + 1, V [a := v], S)
ldc i (P, V, S) → (P + 1, V, S.i)
iadd (P, V, S.v.w) → (P + 1, V, S.(v + w))
imul (P, V, S.v.w) → (P + 1, V, S.(v ∗ w))
dup (P, V, S.v) → (P + 1, V, S.v.v)
pop (P, V, S.v) → (P + 1, V, S)

9

Question 6 (Functional languages): Show the big-step operational seman-
tics rules (not as code) for a functional language with the expression constructs
function application, λ-abstraction, variables, addition and multiplication. The
evaluation strategy should be call-by-value. Use closures and explicit environ-
ment. (6p)

SOLUTION:

γ ` f ⇓ (λx.e){δ} γ ` a ⇓ u δ, x := u ` e ⇓ v
γ ` f a ⇓ v

γ ` λx.e ⇓ (λx.e){γ}

γ ` x ⇓ v
x := v ∈ γ

γ ` e1 ⇓ i1 γ ` e2 ⇓ i2
γ ` e1 + e2 ⇓ i1 + i2

γ ` e1 ⇓ i1 γ ` e2 ⇓ i2
γ ` e1 ∗ e2 ⇓ i1 · i2

Show the derivation tree (using your operational semantics) of the evaluation
of the expression

(\f -> x + f x) (\y -> x * y)

in the environment {x := 3}. (4p)

SOLUTION: Let γ be short-hand for x := 3, f := (λy.x ∗ y){x := 3}.

x := 3 ` λf.x + f x ⇓ (λf.x + f x){x := 3} x := 3 ` λy.x ∗ y ⇓ (λy.x ∗ y){x := 3}

sub derivation

γ ` x + f x ⇓ 12

x := 3 ` (λf.x + f x) (λy.x ∗ y) ⇓ 12

sub derivation:

γ ` x ⇓ 3

γ ` f ⇓ (λy.x ∗ y){x := 3} γ ` x ⇓ 3

x := 3, y := 3 ` x ⇓ 3 x := 3, y := 3 ` y ⇓ 3

x := 3, y := 3 ` x ∗ y ⇓ 9

γ ` f x ⇓ 9

γ ` x + f x ⇓ 12

10

