Programming Language Technology

Exam, 17 August 2016 at 14:00 — 18:00 in M

Course codes: Chalmers DAT151, GU DIT231.
Teacher: Fredrik Lindblad, will visit around 15:00 and 16:30. Phone: 031-
7722038

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs in a C-like imperative language: A program is a list of
statements. Statement constructs are:

e while statements

e block statements (lists of statements surrounded by curly braces)

e expression statements (E;)
Expression constructs are:
identifiers/variables
integer literals
function applications (f (E,F,..))
greater-than (E > F)
multiplication (E * F)

e pre-decrement for variables (--x)
Operator precedences and associativity should follow the C standard. You can
use the standard BNFC categories Integer and Ident as well as list short-
hands, and terminator, separator and coercions rules. Note that function
definitions should not be part of the grammar. (10p)

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

while (2 * —-y > x) {f(--x);}

in the grammar that you wrote in question 1. In the parse tree show the
coercions explicitly. (10p)



Question 3 (Typing and evaluation):

A. Write standard typing rules or syntax-directed type-checking code (or
pseudocode) for the following 5 constructs of the grammar in question 1:
while-statements and expression forms variable/identifier, function appli-
cation, pre-decrement and multiplication. The variable context must be
made explicit. (5p)

B. Write big-step operational semantic rules or syntax-directed interpreta-
tion code (or pseudocode) for the same 5 constructs as in part A. The
environment must be made explicit. (5p)

Question 4 (Parsing):

A. Show a BNF grammar for expressions with the constructs boolean and,
subtraction, less-than, variables and parentheses. Associativity and prece-
dence should follow the C standard. The built-in BNFC Ident token type
may be used, but no short-hands such as coercions. (4p)

B. Trace the LR-parsing of the expression x && y - z < w. Show how the
stack and the input evolves and which actions are performed. (6p)

Question 5 (Compilation):

A. Write compilation schemes for each of the constructs of the grammar in
question 1 except function application (in total 8 statement and expression
constructs). It is not necessary to remember exactly the names of the JVM
instructions — only what arguments they take and how they work. (6p)

B. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part A. (4p)

Question 6 (Functional languages): Show the big-step operational seman-
tics rules (not as code) for a functional language with the expression constructs
function application, A-abstraction, variables, integer literals and integer mul-
tiplication. The evaluation strategy should be call-by-value. Use closures and
explicit environment. (6p)

Show the derivation tree (using your operational semantics) of the evaluation
of the expression

(\f > £ (£ 8)) (\x -> 2 * x)

(4p)



