
Types for programs and proofs

Take home exam 2015

• Deadline: Friday 23 October at 12.00.

• Answers are submitted in the Fire system.

• Grades: 3 = 24 p, 4 = 36 p, 5 = 48 p. Bonus points from talks and
homework will be added.

• Note that there is a total of 75 p in the whole exam, and that you are
only expected to solve a fraction of the problems. Choose carefully which
ones you spend time on.

• In some of the problems you are asked to write programs and proofs in
Agda. Alternatively, you may use Haskell for the programs, but you can
of course not use it for the proofs. You can then get partial credit for
careful, rigorous, handwritten proofs.

• Note that this is an individual exam. You are not allowed to help each
other. If we discover that you have collaborated, both the helper and
the helped will fail the whole exam. We will also consider disciplinary
measures.

• Please contact Peter or Thierry if there is an ambiguity in a question or
something else is unclear. We will publish any corrections and additions
on the course homepage.
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1. Distributivity laws. Prove the following distributivity laws in Agda:

(b c d : Bool) -> b && (c || d) == (b && c) || (b && d)

(B C D : Set) -> B & (C \/ D) <==> (B & C) \/ (B & D)

(m n p : Nat) -> m * (n + p) == (m * n) + (m * p)

Recall that proving a proposition is the same as constructing a proof
object of the corresponding type! You can use any definitions you like
(including ones from files given in the lecture) of equality (==), conjunction
&&, and disjunction ||, of Booleans; equivalence (<==>), conjunction /\,
and disjunction \/, of propositions, and of equality (==), addition +, and
multiplication * of natural numbers. (You may also change symbols and
use unicode if you like.) (5 p)

2. Integers.

(a) Define the set of (positive and negative) integers Int in Agda and
the relation

_==_ : Int -> Int -> Set

of equality of integers. There are several ways to define the integers.
Some have a unique representation for each integer and others may
have several representations. It is up to you to choose one. (Hint: you
may of course base your implementation on existing implementations
of natural numbers.)

(b) Define addition of integers as a function

_+_ : Int -> Int -> Int

Then prove that it respects equality:

(m n : Int) -> m == m’ -> n == n’ -> m + n == m’ + n’

(c) Prove that integer addition is associative:

(m n p: Int) -> (m + n) + p == m + (n + p)

(d) What (reasonable) alternative implementations of integers (in Agda)
can you think of? Discuss pros and cons! For example, how do they
influence the difficulty of the above proofs?

(10 p)
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3. Intuitionistic propositional logic.

(a) Implement the set of formulas in intuitionistic propositional logic as
an inductive data type Formula in Agda. Informally we have the
following ways to construct formulas:

Atomic propositions Xn is a formula for each natural number n.

Connectives If P and Q are formulas, then P ∨Q,P ∧Q,P ⊃ Q,⊥,
and ⊤ are formulas.

(b) Write a function

[[_]]_ : Formula -> Env -> Set

which computes the meaning of a propositional formula relative to
an environment Env = Nat -> Set which assigns a proposition (set)
to each atomic proposition Xn. For example, if ρ : Env and ρn = A,
then [[Xn]]ρ = A.

(10 p)

4. Monoids as records. In Agda you can implement algebraic structures
(and their corresponding notions in programming called “interfaces”, “ab-
stract data types”, etc) as records. In the lectures we showed how to im-
plement an algebraic structure (interface) for counters. We also showed a
trivial implementation of counters as natural numbers.

A monoid is an algebraic structure with an associative binary operation *
and a unit element. That is, it is a set M and two operations

_*_ : M -> M -> M

id : M

where * is associative and id is an identity wrt *. (See the wikipedia
article for more information, but note that we here use a curried version
of * and wikipedia uses an uncurried version.)

(a) Your task is to implement a record for monoids in Agda. To do this
you need to have fields both for the underlying set, for the operations,
and for the three laws of associativity and identity.

(b) Also implement three instances:

• the monoid of Booleans with * as conjunction;

• the monoid of natural numbers with * as addition;

• the monoid of functions with * as composition.

Hint: you first need to figure out the identities.

You will get partial credit if you don’t include the laws, only the opera-
tions! (10 p)
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5. This is a problem related to Ulf Norell’s lecture. Your task is to solve the
problems specified in the file Problem5.agda. Note that this file imports
the files Bool.agda and Nat.agda from Peter’s lectures. (15 p)

6. Untyped lambda calculus

We define δ = λx.x x and Ω = δ δ and t = λx.Ω. Is t β-convertible to Ω?
Why? (5p)

7. Krivine Abstract Machine

We consider terms in de Bruijn notations

t ::= true | false | n | λt | t t n ::= 0 | n+ 1

and environments and closures

ρ, ν ::= () | (ρ, v) u ::= tρ

The values are
v ::= true | false | (λt)ρ
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(a) Big-step semantics

We define then the following operational semantics

(λt)ρ ⇓ (λt)ρ trueρ ⇓ true falseρ ⇓ false

u ⇓ v

0(ρ, u)) ⇓ v

nρ ⇓ v

(n+ 1)(ρ, u) ⇓ v

t0ρ ⇓ (λt)ν t(ν, t1ρ) ⇓ v

(t0 t1)ρ ⇓ v

We define also types and contexts

T ::= Bool | T → T Γ ::= () | Γ.T

with the usual typing rules

Γ ⊢ true : Bool Γ ⊢ false : Bool

Γ ⊢ n : T

Γ.S ⊢ n+ 1 : T Γ.T ⊢ 0 : T

Γ.S ⊢ t : T

Γ ⊢ λt : S → T

Γ ⊢ t0 : S → T Γ ⊢ t1 : S

Γ ⊢ t0 t1 : T

and finally

() : ()

ρ : Γ u : T

(ρ, u) : Γ.T

ρ : Γ Γ ⊢ t : T

tρ : T true : Bool false : Bool

Show that if u ⇓ v and u ⇓ v1 then v = v1. (2p)

Show that if u : T and u ⇓ v then v : T . (3p)

We define CT (u) by induction on T , if u : T is derivable:

i. CBool(u) means that u ⇓ true or u ⇓ false

ii. CS→T (u) means that u ⇓ (λt)ρ and CT (t(ρ, u1)) whenever CS(u1)
holds

Show that if u0 ⇓ v implies u1 ⇓ v then CT (u0) implies CT (u1). (2p)

Show that u : T implies CT (u) (8p). (Hint: you will have to use
CΓ(ρ) defined by C()() and CΓ.T (ρ, u) if CΓ(ρ) and CT (u).)

(b) Small-step semantics

We introduce stacks
S ::= () | u · S

Krivine Abstract Machine is defined by the following small step se-
mantics

(0, (ρ, (t, ν)), S) → (t, ν, S) (n+ 1, (ρ, u), S) → (n, ρ, S)

(t0 t1, ρ, S) → (t0, ρ, (t1ρ) · S) (λt, ρ, u · S) → (t, (ρ, u), S)

Show that if tρ ⇓ (λt1)ρ1 then we have (t, ρ, S) →∗ (λt1, ρ1, S) for
all S and if we have tρ ⇓ true (resp. tρ ⇓ false) then (t, ρ, S) →∗

(true, ρ1, S) (resp. (t, ρ, S) →∗ (false, ρ1, S)) for some ρ1. (5p)
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