Linda (or, "Spaces")

K. V. S. Prasad

Dept of Computer Science

Chalmers University

19 Sep 2016

Questions?

- Anything you want to say
 - Comments, questions, stray thoughts, etc.
 - Are we too fast/slow?
- Reminder talk to your rep!
 - Feedback meeting after class
- Practical problems?
 - Don't miss deadlines! (you're not Douglas Adams)
 - Registration and other formalities
 - Find a lab partner!

Plan for today, and where we are

- Chap 9: Linda
 - Chap 3, 4, 5 (skipped for now)
 - Chap 6, 7, 8 need more detail
- BUT!
 - You now know enough to try the exercises
 - in Chaps. 1, 2, 3, 6, 7, 8

Comments on message passing

- Inter-process
 - Communication
 - Coordination
 - Cooperation
 - Contention
 - Concurrency
 - Synchronisation
- We mentioned simulation and examples such as pilots, athletes, dancers, musicians, ...

Examples from the book

- Critical Section
- Producer-consumer
 - Doesn't matter whether synch/asynch
- Dining philosophers
 - With synchronous channels only.
 - Each fork behaves like a semaphore
 - Both deadlock and starvation seem possible!

Rendezvous

- Like synchronous channel, except
 - Addressing asymmetric
 - Sender knows receiver's address (entry), not v-v.
 - The communication may involve computation and return of value by the receiver
 - So made for client-server

Ada

- Uses protected objects
 - Since the 1980's
 - though the concept was around earlier
 - Thus has the cleanest shared memory model
- Also has a very good communication model
 - Rendezvous
- Ada was decided carefully through the 1970s
 - Open debates and process of definition
- Has fallen away because of popularity of C, etc.
 - Use now seen as a proprietary secret!

Loosely coupled systems

- Tightly coupled systems
 - Shared memory
 - Synchronous communication
 - Whether one-to-one or broadcast
- Loosely coupled
 - Asynchronous communication
 - Persistent messages
- Linda is such a system
 - So are filing systems and databases?

Tuple space

- Large shared notice board
- Posted notes are in the form of tuples
- Can read notes matching any pattern
 - E.g., you look for a pair
 - Only singletons and triples posted
 - Block until someone posts a pair
- This blocking gives us synchronisation

Linda primitives

- Post(v1, v2, ..., vn)
 - Put tuple of values out
 - Release an arbitrary proc waiting on this pattern
- Remove(X1, x2, ..., Xn)
 - X's are variables and x's are constants
 - Remove an arbitrary matching note
 - Block if none available
- Read(X1, x2, ..., Xn)
 - Like remove, but leave note on board

Generalisation of read and remove

- Allow patterns such as (X, 4, Y)
 - Matches only triples with middle element 4
- Allow patterns such as (X, c=, Y)
 - Where c is a variable
 - Matches only triples with middle element = c

Linda examples

- From the book
 - Slides 8.4 thru 8.7
 - Matrix multiplication using channels
 - Slides 9.1 thru 9.8
 - CS, client-server, buffer, matrix in Linda
- Given a monotonically increasing function f
 - with f(0) < 0 and f(1) > 0
 - find x where 0<x<1 such that f(x)=0.
 - Can be done by binary search
 - How to use more than one process
 - Can use ability to interrupt

The matrix example

So element (3,3) of the result is