
Erlang and message passing
(13 February)

What does f(5) return?

f(0) -> 0;

f(N) -> N + f(N-1).

1. 0

2. 5

3. 15

4. the factorial of 5

17 / 34

What does f(5) return?

f(0) -> 0;

f(N) -> N + f(N-1).

1. 0

2. 5

3. 15

4. the factorial of 5

17 / 34

What does g([a,b,c,d,e,f,g]) return?

g([]) -> [];

g([X]) -> [X];

g([X|Y|T]) -> [X|g(T)].

1. []

2. [a]

3. [a,b,c,d,e,f,g]

4. [a,c,e,g]

18 / 34

What does g([a,b,c,d,e,f,g]) return?

g([]) -> [];

g([X]) -> [X];

g([X|Y|T]) -> [X|g(T)].

1. []

2. [a]

3. [a,b,c,d,e,f,g]

4. [a,c,e,g]

18 / 34

What do h({3,3}) and h({4,3}) return?

h({3,B}) -> B;

h({_,3}) -> 3;

h({_,_}) -> 4.

1. 3 and 3

2. 3 and 4

3. 4 and 3

4. 4 and 4

19 / 34

What do h({3,3}) and h({4,3}) return?

h({3,B}) -> B;

h({_,3}) -> 3;

h({_,_}) -> 4.

1. 3 and 3

2. 3 and 4

3. 4 and 3

4. 4 and 4

19 / 34

What does k([]) return?

k({_,_,_}) -> [3,3,3];

k(X) ->

case X of

{A,B} -> A + B;

_ -> 0

end.

1. 0

2. [3,3,3]

3. It throws an exception

4. {0,0}

20 / 34

What does k([]) return?

k({_,_,_}) -> [3,3,3];

k(X) ->

case X of

{A,B} -> A + B;

_ -> 0

end.

1. 0

2. [3,3,3]

3. It throws an exception

4. {0,0}

20 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 0},

Q ! {self(), 2}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

21 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 0},

Q ! {self(), 2}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

21 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! 0,

Q ! 2.

q() ->

receive N ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2 in any order

2. 0 and 2 in any order, if P and Q are the only processes

3. 1 and 3 in any order, if P and Q are the only processes

4. 1 and 3 in any order

22 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! 0,

Q ! 2.

q() ->

receive N ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2 in any order

2. 0 and 2 in any order, if P and Q are the only processes

3. 1 and 3 in any order, if P and Q are the only processes

4. 1 and 3 in any order

22 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

self() ! self(),

receive self() ->

Q !

{self(),

fun (Y) -> Y+1 end}

end.

q() -> % P is P’s pid

receive {P, F} ->

io:format("~p", [F(3)]) end.

1. 3

2. 4

3. P’s pid (process identifier)

4. Q’s pid (process identifier)

23 / 34

What does process Q print?

process P process Q

p() -> % Q is Q’s pid

self() ! self(),

receive self() ->

Q !

{self(),

fun (Y) -> Y+1 end}

end.

q() -> % P is P’s pid

receive {P, F} ->

io:format("~p", [F(3)]) end.

1. 3

2. 4

3. P’s pid (process identifier)

4. Q’s pid (process identifier)

23 / 34

