CHALMERS

Introduction to concurrent programming
Lecture 1 of TDA383/DIT390 (Concurrent Programming)

Carlo A. Furia

Chalmers University of Technology — University of Gothenburg
SP32016/2017

A motivating example
Why concurrency?
Basic terminology and abstractions

Java threads

Traces

A motivating example

As simple as counting to two

We illustrate the challenges introduced by concurrent programming
on a simple example: a counter modeled by a Java class.

« First, we write a traditional, sequential version

» Then, we introduce concurrency and...run into trouble!

Sequential counter

public class Counter {

private int counter = 0; . .
public class SequentialCount {

) public static
// increment counter by one . . .

. . void main(String[] args) {
public void run() {
. Counter counter = new Counter()

int cnt = counter;)
counter.run(); // increment once

counter = cnt + 1;))
counter.run(); // increment twice

// print final value of counter
System.out.println(
// current value of counter
o counter.counter());
public int counter() {

return counter;

* What is printed by running: java SequentialCount?
* May the printed value change in different reruns?

w

Modeling sequential computation

5 public void run() {
6 int cnt = counter;
7 counter = cnt + 1;
8 }
counter.run(); // first call: steps 1-3

counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {

6 int cnt = counter; °
7 counter = cnt + 1;

8 }

e counter.run(); // first call: steps 1-3
counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1; °
8 }

e counter.run(); // first call: steps 1-3
counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {
6 int cnt = counter;
7 counter = cnt + 1;
8 } i

e counter.run(); // first call: steps 1-3
counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {

6 int cnt = counter; °
7 counter = cnt + 1;

8 }

counter.run(); // first call: steps 1-3
e counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1; °
8 }

counter.run(); // first call: steps 1-3
e counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {
6 int cnt = counter;
7 counter = cnt + 1;
8 } i

counter.run(); // first call: steps 1-3
e counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Modeling sequential computation

5 public void run() {
6 int cnt = counter;
7 counter = cnt + 1;
8 }

counter.run(); // first call: steps 1-3
counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

Adding concurrency

Now, we revisit the example by introducing concurrency:
Each of the two calls to method run can be executed in parallel

In Java, this is achieved by using threads. Do not worry about the
details of the syntax for now, we will explain it later.

The idea is just that:
» There are two independent execution units (threads) t and u

» Each execution unit executes run on the same counter object

* We have no control over the order of execution of t and u

Concurrent counter

public class ConcurrentCount {
public static void main(String[] args) {
CCounter counter = new CCounter();

. // threads t and u, sharing counter
public class CCounter
Thread t = new Thread(counter);
extends Counter
i Thread u = new Thread(counter);
implements Runnable)
t.start(); // increment once

{ . .
u.start(); // increment twice
// threads))
) try { // wait for t and u to terminate
// will execute o o
t.join(); u.join(); }

// run() ,

} catch (InterruptedException e)

{ System.out.println("Interrupted!"); }
// print final value of counter
System.out.println(counter.counter());
P}
» What is printed by running: java ConcurrentCount?
* May the printed value change in different reruns?

javac Counter.java CCounter.java ConcurrentCount.java
java ConcurrentCount.java

java ConcurrentCount.java

java ConcurrentCount.java

$
1
$ java ConcurrentCount.java
2

The concurrent version of counter occasionally prints 1 instead of the
expected 2. It seems to do so unpredictably.

javac Counter.java CCounter.java ConcurrentCount.java
java ConcurrentCount.java

java ConcurrentCount.java

java ConcurrentCount.java

$
1
$ java ConcurrentCount.java
2

The concurrent version of counter occasionally prints 1 instead of the
expected 2. It seems to do so unpredictably.

Welcome to concurrent programming!

geek & poke

SIMPLY EXPLAINED

DOES IT
k\WORK?

CONCURRENCY

Why concurrency?

Reasons for using concurrency

Why do we need concurrent programming in the first place?

abstraction: separating different tasks, without worrying about when
to execute them (example: download files from two
different websites)

responsiveness: providing a responsive user interface, with
different tasks executing independently (example:
browse the slides while downloading your email)

performance: splitting complex tasks in multiple units, and assign

each unit to a different processor (example: compute
all prime numbers up to 1 billion)

Concurrency vs. parallelism

In this course we will mostly use concurrency and parallelism as
synonyms. However, they refer to similar but different concepts:

concurrency: nondeterministic composition of independently
executing units (logical parallelism)

parallelism: efficient execution of fractions of a complex task on
multiple processing units (physical parallelism)

* You can have concurrency without physical parallelism: operating
systems running on single-processor single-core systems

 Parallelism is mainly about speeding up computations by taking
advantage of redundant hardware

Moore’s law and its e

The spectacular advance of computing in the last 60+ years has been
driven by Moore’s law:

The density of transistors in integrated circuits
doubles approximately every 2 years

I Stuttering [Chip introduction

@ Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $, m Pentium 4 ‘ Xeon | [Core 2 buo]
<0 Logsscale
5 [Pentium] o
10 ‘ Pentium II

pentium |

; 108
200204 06 08 10 12 15
10°
10
T T e e 107
1970 75 80 85 90 95 2000 05 10 15
Saurces: Tntel; press reports; Bob Colwell; Linley Group; T8 Consulting; The Economist “Maximum safe power consumption

Moore’s Law in January 2017

COMMUNICATIONS
“ACM

Exponential Laws of
Computing Growth

Concurrency everywhere

The end of Moore’s law is having a major impact on the practice of
programming:

» before: CPUs get faster without significant architectural changes

» program as usual, and wait for your program to run faster
+ concurrent programming is a niche skill (for operating systems,
databases, high-performance computing)

» now: CPUs do not get faster but add more and more parallel
cores
» program with concurrency in mind, otherwise your programs
remain slow
+ concurrent programming is pervasive

Very different systems all require concurrent programming:

* desktop PCs » embedded systems
» smart phones + the Raspberry Pi
* video-games consoles * cloud computing

Amdahl’s law: concurrency is no free lunch

We have n processors that can run in parallel. How much speedup
can we achieve?

sequential execution time
parallel execution time

speedup =

Amdahl’s law shows that the impact of introducing parallelism is
limited by the fraction p of a program that can be parallelized:

:
(1-p) + p/n
N—_—— ~—~

sequential part parallel part

maximum speedup =

Amdahl’s law: examples

:
(1-p) + p/n
N—_—— ~—~

sequential part parallel part

maximum speedup =

With n = 10 processors, how close can we get to a 10x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 3.57
10% 90% 5.26
1% 99% 9.17

With n = 100 processors, how close can we get to a 100x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP
20% 80% 4.81

10% 90% 9.17

1% 99% 50.25

Basic terminology and
abstractions

Processes

A process is an independent unit of execution — the abstraction of a
running sequential program:

« identifier
 program counter
* memory space

The runtime/operating system schedules processes for execution on
the available processors:

CPUj running process Ps; CPUs running process Po

Process Py is waiting

Processes

A process is an independent unit of execution — the abstraction of a
running sequential program:

« identifier
 program counter
* memory space

The runtime/operating system schedules processes for execution on
the available processors:

CPUj running process Ps; CPUs running process Po

A
suspend

resume
Process P; is waiting scheduler

Processes

A process is an independent unit of execution — the abstraction of a
running sequential program:

« identifier
 program counter
* memory space

The runtime/operating system schedules processes for execution on
the available processors:

CPUj running process Ps; CPUs running process P;

Process P is waiting

Process states

The scheduler is the system unit in charge of setting process states:

ready: ready to be executed, but not allocated to any CPU

blocked: waiting for an event to happen

running: running on some CPU

event

new —»

blocked

A 4

ready

wait
resume

running

—> terminate

suspend

A thread is a lightweight process — an independent unit of execution
on the same program space:

« identifier

* program counter shared memory

* memory
* local memory, separate for Thread T; Thread T,
A

each thread Py
 global memory, shared with ,[Y
other threads | Ti’s local memory | | 7,'s local memory |

In practice, the difference between processes and threads is fuzzy
and implementation dependent. Normally in this course:

processes: executing units that do not share memory (in Erlang)
threads: executing units that share memory (in Java)

Shared memory vs. message passing

Shared memory models: Distributed memory models:
» communication by writing to e communication by message
shared memory passing
* e.g. multi-core systems * e.g. distributed systems

A]L

| Procgss P4 | | Process P,,|
v

messag

Java threads

Java threads

Two ways to build multi-threaded programs in Java:

« inherit from class Thread, override method run

 implement interface Runnable, implement method run

public class CCounter

implements Runnable CCounter c = new CCounter()
{
// thread’s computation: Thread t = new Thread(c);
public void run() { Thread u = new Thread(c);
int cnt = counter;
counter = cnt + 1; t.start();
} u.start();

States of a Java thread

blocked/
waiting

event
\

ready ‘

- .

suspend
new; start() P

Resuming and suspending is done
by the JVM scheduler, outside the

program’s control

running

'

terminate

For a thread object t:

e t.start(): the thread is ready
for execution

* t.sleep(n): block the thread
for n milliseconds (correct
timing depends on JVM
implementation)

e t.wait(): block the thread
until an event occurs

e t.join(): block the current
thread until t terminates

Thread execution model

Shared vs. thread-local memory:

» shared objects: the object on
which the thread operate, and
all reachable objects

shared objects

thread t4

if

|t1’s local memory| | t,’s local memory|

thread t, « local memory: local variables,

]: and special thread-local
attributes

Threads proceed asynchronously, so they have to coordinate with
other threads accessing the same shared objects.

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; oo

7 counter = cnt + 1;

8 1}
t’SLOCAL u’S LOCAL SHARED
1pc: 6 cnty: L{pc,: 6 cnty,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; o

7 counter = cnt + 1; o

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cente: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; o

7 counter = cnt + 1;

8 1} °
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pcy: 8enty: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; o

7 counter = cnt + 1;

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1; o

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1} °
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

=

public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t’SLOCAL u’S LOCAL SHARED
1 pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnty: 0| pcy: 6 cnty,: 1] counter: 0
3 pc: 8centy: O|pcCy: 6 cnty: L] counter: 1
4 done pc.: 6 cnt,: 1| counter: 1
5 done pC.: 7 cnty: 1| counter: 1
6 done pc,: 8 cnt,: 1|counter: 2
7 done done counter: 2

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; ee

7 counter = cnt + 1;

8 1}
t'SLOCAL u’S LOCAL SHARED
1pc: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter; e

7 counter = cnt + 1; e

8 1}
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: O[pcy: 6 cnty: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1; ee

8 1}
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1; e

8 1} °
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4pci: 7 cente: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1} °
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pcCi: 8cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

One execution of the concurrent counter

1 public class CCounter implements Runnable {

2 int counter = 0; // shared object state

3

4 // thread’s computation:

5 public void run() {

6 int cnt = counter;

7 counter = cnt + 1;

8 1}
t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pcy: 7 cnty: Opcy: 6 cnt,: L| counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: O
4 pci: 7 cnte: 0| pcy: 8 cnty: Of counter: 1
5pci: 8 cnty: 0 done counter: 1
6 done done counter: 1

Traces

Traces

t'SLOCAL u’S LOCAL SHARED
1 pc.: 6 cnty: L{pc,: 6 cnt,: 1] counter: O
2pci: 7 cnte: 0| pcy: 6 cnty,: L counter: O
3 pCy: 7 enty: O|pCy: 7 cnty: O counter: 0
4 pci: 7 cnte: 0| pcy: 8 centy: Of counter: 1
5pci: 8 cent: 0 done counter: 1
6 done done counter: 1

The sequence of states gives an execution trace of the concurrent
program. A trace is an abstraction of concrete executions:

 atomic/linearized
« complete
* interleaved

Trace abstractions

cnt = counter counter = ¢cnt + 1
thread t | \ :]
cnt = counter : counter = cnt * 1
threadu __ | L |
counter 0: i
. .4 Ll
trace states: i 5 3 45 6

atomic/linearized: the effects of each thread appear as if they

happened instantaneously, when the trace snapshot is
taken, in the thread’s sequential order

complete: the trace include all intermediate atomic states

interleaved: the trace is an interleaving of each thread’s linear trace
(in particular, no simultaneity)

Abstraction of concurrent programs

When convenient, we will use an abstract notation for multi-threaded
applications, which is similar to the pseudo-code used in Ben-Ari’'s

book but uses Java syntax. shared memory
int counter = 0;/
thread t thread u
int cnt; int cnt; local memory
1 cnt = counter; cnt = counter;
2 counter = cnt + 1; counter = ¢cnt + 1; 2
code

Each line of code includes exactly one instruction that can be
executed atomically:

+ atomic statement ~ single read or write to global variable
* precise definition is tricky in Java, but we will learn to avoid pitfalls

	A motivating example
	Why concurrency?
	Basic terminology and abstractions
	Java threads
	Traces

