L -

CHALMERS 9]

Graphicégfl_lfg_wfa%e .
‘:.‘ ; .\). ..’,-,4__ ; '.f.-:

Graphics hardware — why?

e About 100x faster!
e Another reason: about 100x faster!
e Simple to pipeline and parallelize

e Current hardware based on triangle rasterization
with programmable shading (e.g., OpenGL
acceleration)

e Ray tracing: there are research architetures, and
few commercial products

- Renderdrive, RPU, (Gelato), NVIDIA OptiX
— Or write your own GPU ray-tracer

.!Nizaw_ﬁ._w__,qm¢,‘ RRUERERE SRR

Erml e

Perspective-correct texturing

e How is texture coordinates interpolated over a triangle?
e Linearly?

e
) 3

Linear interpolation Perspective-correct interpolation '

e Perspective-correct interpolation gives foreshortening effect!

e Hardware does this for you, but you need to understand this
anyway!

Vertices are projected onto
screen by non-linear

Recall the fO"OWing transform. Thus, tex coords

cannot be linearly
interpolated (just like a 3D-
position cannot be).

e Before projection, v, and after p (p=Myv)
e After projection p is not 1!

e Homogenization: (p,/p,,, p,/p,,, P./D,,, 1)
e Gives (p,,p, . p., 1)

Mathematic derivation: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.3.211&rep=rep1 &type=pdf

Texture coordinate interpolation

e Linear interpolation does not work

e Rational linear interpolation does:
— u(x)=(ax+b) /(cx+d) (along a scanline where y=constant)
- a,b,c,d are computed from triangle’s vertices (x,y,z,w,u,V)

e Not really efficient to compute a,b,c,d per scan line

e Smarter:

- Compute (u/w,viw,1/w) per vertex

- These quantities can be linearly interpolated!
- Then at each pixel, compute 1/(1/w)=w

— And obtain: (w*u/w,w*viw)=(u,v)

- The (u,v) are perspectively-correct interpolated

e Need to interpolate shading this way too
- Though, not as annoying as textures

e Since linear interpolation now is OK, compute, e.g., A(u/w)/
Ax, and use this to update u/w when stepping in the x-
direction (similarly for other parameters)

Put differently: 3RS 335

e Linear interpolation in screen space does not work
for u,v

e Solution:
- We have applied a non-linear transform to each vertex. l.e.,

(x/w, ylw, z/w, wiw).
e Non-linear due to 1/w — factor from the homogenisation

- We must apply the same non-linear transform to u,v
e E.g. (u/w, v/iw). This can now be correctly screenspace interpolated since
it/fo)llows the same non-linear (1/w) transform and then interpolation as (x/w, y/w,
z/w
e \When doing the texture lookups, we still need (u,v) and not (u/w, v/w).
e So, multiply by w. But we don’t have w at the pixel.
e So, linearly interpolate (u/w, v/iw, 1/w), which is computed in screenspace at each
vertex.
e Then at each pixel:
- u; = (u/w), / (1/w),
— v; = (viw), [(1/w),

For a formal proof, see Jim Blinn,”"W Pleasure, W Fun”, IEEE Computer
Graphics and Applications, p78-82, May/June 1998

Need to interpolate shading this way too, though, not as annoying as textures

Background:
Graphics hardware architectures

e Evolution of graphics hardware has started
from the end of the pipeline

- Rasterizer was put into hardware first (most
performance to gain from this)

- Then the geometry stage
- Application will not be put into GPU hardware (?)

e Two major ways of getting better
performance:
— Pipelining
- Parallellization
- Combinations of these are often used

Parallellism
e "Simple” idea: compute n results in parallel, then

combine results

e Not always simple!
- Try to parallelize a sorting algorithm...

— But vertices are independent of each other, and also pixels, so
simpler for graphics hardware

e Can parallellize both geometry and rasterizer stage:

Application (A)

Geometry Rasterizer
stage stage

CHALMERS

Application

PCI-E x16

Department of Computer Engineering

On NVIDIA

8000/9000/200/400/500/6

> 00/700/TITAN/900-series:
Vertex-, Geometry- and Fragment

shaders allocated from a pool of
up to thousands of ALUs

Vertex Vertex Vertex
shader shader e o o Shader
Primitive assembly
Geo Geo Geo
shader shader shader
Clipping
Fragment Generation
Fragment Fragment Fragment
shader shader shader
o
Fragment Fragment O Fragment
Merge Merge Merge

| GeForce 7800

<3

T
TR
BT

TR S e e D

Ei

Pm Parttion Paribon m

Graphics Processing Unit - GPU

4 1.5 GB RAM Memory

= T
o 5 —
<

GPU

&N\\i

» NVIDIA Geforce GTX 580

Beyond Programmable Shading

13

s Jwremen

» ,e
i e
-

.-: :.-oo-c.cz.-oq.

. 008 - 45U -TOoaNl 081" -

AL AR R LR T R ...!."UXC
DO ake » . »
.

o g—

NVIDIA Pascal GP100
(GTX 1()80 / T1ta‘nv X)

LLLLAE LELL L B

ot mlew - Slasl - i]

)) e (el —d o et —) | o
e y
- - -

4000600 § SOPNEIE Y & SINENSIIG # SES0NNE Y

M » M
fe N - .

2 : : :

H : : :

. . . .

: : H :

L : : :
grovesvend S OB ininied o ¥ =S -
LER L R R EEL PR L R T T T I

3584 cores
F 11 Tflops
— 15.3Btrans.
16 GB Ram
4MB L2
~64KB. L1
256KB regs/SM
224 tex units

* SANR99 319 qEER

o L s s L S L S L S L am

neering

Department of Computer Eng

CHALMERS

PCl Express 3.0 Host Interface

il matrucson Cache |

z foweyy ypimpueg uBi

U

3840 cores -
disabled spill
3584 cores

60 SM / GP

=

SM GANER?GmS

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
& s s &

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

LD/ST SFU |

LDIST SFU

11T
:

:

:
4
.
2
:
172
3

;

| LD/IST SFU
LD/ST lspu\ LDIST SFU

3
B
g

—
(]
=
=1
>

X ex e Tex

Graphics Hardware History

e 80’s:
— linear interpolation of color over a scanline
-~ Vector graphics

e 91’ Super Nintendo, Neo Geo,

- Rasterization of 1 single 3D rectangle per frame (FZero) ’ 5o .»‘ N
e 95-96': Playstation 1, 3dfx Voodoo 1 el =

- Rasterization of whole triangles (Voodoo 2, 1998) -
e 99’ Geforce (256) Y EY

- Transforms and Lighting (geometry stage) e —

e (02’ 3DLabs WildCat Viper, P10

- Pixel shaders, integers, == " Lh
e (02’ ATl Radion 9700, GeforceFX

- Vertex shaders and Pixel shaders with floats

e 06’ Geforce 8800

- Geometry shaders, integers and floats, logical operations
e Then:

— More general multiprocessor systems, higher SIMD-width, more cores

Direct View Storage Tube

 Created by Tektronix
—Did not require constant refresh

—Standard interface to computers
* Allowed for standard software
* Plot3D in Fortran

—Relatively inexpensive

» Opened door to use of computer
graphics for CAD community

Tektronix 4014

Briefly about Graphics HW pipelining

In GeForce3: 600-800 pipeline stages!

2001 o

57 million transistors
First Pentium 1V: 20 stages, 42 million transistors,

e Evolution of cards:

2004
2005
2004
2005

2006

2008
2007
2010

2011

2012
2013
2014
2015
2016

X800 — 165M transistors

X1800 — 320M trans, 625 MHz, 750 Mhz mem, 10Gpixels/s, 1.25G verts/s

GeForce 6800: 222 M transistors, 400 MHz, MHz core/550 MHz mem

GeForce 7800: 302M trans, 13Gpix/s, 1.1Gverts/s, bw 54GB/s, MHz core,mem 650MHz(1.3GHz)

GeForce 8800: 681M trans, 39.2Gpix/s, 10.6Gverts/s, bw:103.7 GB/s, MHz core (for
shaders), 1080 MHz mem (effectlve 2160 GHz)

Geforce 280 GTX: 1.4G trans, 65nm, MHz core, 1107(*2)MHz mem, 142GB/s, 48Gtex/s
ATI Radeon HD 5870: 2.15G trans, 153GB/s, 40nm, MHz,GDDR5,256bit mem bus,

Geforce GTX480: 3Gtrans, MHz core, Mem (1.848G(*2)GHz), 177.4GB/s, 384bit mem bus,
40Gtexels/s

GXT580: 3Gtrans, , Mem: 2004/4008 MHz, 192.4GB/s, GDDR5, 384bit mem bus,

49.4 Gtex/s

GTX680: 3.5Gtrans (7.1 for Tesla), , 192.2GB/s, 6GHz GDDRS5, 256-bit mem bus.
GTX780: 7.1G, 336 GB/s, Mem clock: 6GHz GDDRS5, 384-bit mem bus
GTX980: 7.1G?, 224GB/s, Mem clock: 7GHz GDDRS5, 256-bit mem bus

GTX Titan X: 8Gtrans, 336GB/s, Mem clock: 7GHz GDDRS5, 384-bit mem bus
Titan X: 12/15Gtrans, 480GB/s, Mem clock: 10Gbps GDDR5X, 4096-HBM2

Lesson learned: #trans doubles I:§>er 2 years. Core clock increases slowly. Mem clock —increases with
new technology DDR2, DDR3, GDDRS5, and with more memory busses (a 64-bit). Now stacked mem.

We want as fast memory as possible! Why?

e Parallelization can cover for slow clock. Parallelization more energy efficient than high clock
frequency. Powerconsumption prop. to freg?.

e Memory transfers often the bottleneck

GPU- Nvidia’s Pascal 2016 _

Overview:

60 cores a

Core 1 Core 1 64-SIMD width
(2*4*8)
L1S 11$ ~64 KB per each
64 SIMD
768 KB L2 S
GPU core has much simpler Bandwidth
e instruction set ~480 GB/s
 cache hierarchy Bus:
than a CPU core RAM — GDDRSX 256/384/4096
16 GB, ~10 Gbps bits
Wish: Compare to
3584 ALUs a 1 float/clock => 14KB/clock ATl 2900:
~1.5GHz core clock => 21500 GB/s request - 2x512bits
We have ~480GB/s. In reality we can do 20-40 instr. between each RAM- Larrabee:

read/write. Solved by L1$ + L2$ + latency hiding (warp switching) - 2x512bits

AVX:

C P U - 20 1 1 Intel’.s Sandybridge

AMD'’s Bulldozer

Core 1 L1 dS Core 2 32 KB

L1iS 32 KB
Core 3 L1 dS Core4 L1dS
L1iS 1 -8 cores a
| D 4 SIMD floats
256bits L2 shared S 2-4 MB (16 SIMD for
internal 13 shared $ 8-10MB Dytes)
buses S s e
Graphics e 8cores a4 floats
Memory \ = We want 128 bytes/clock
CH:t)Jrgroller ‘ (e.g. from RAM)
(= 128GByte/s, 1GHz CPU
Gfx card P,

* |n addition, x3, since:
rl=r2+r3;
In reality: 6-12GB/s

Solved by S-hierarchy +
registers

motherboard

Memory bandwidth usage is huge!!

e On top of that bandwith usage is never 100%.

e However, there are many techniques to reduce
bandwith usage:
— Texture caching with prefetching
- Texture compression
- Z-compression
- Z-occlusion testing (HyperZ)

Bonus

Z-occlusion testing and Z-
compression

e One way of reducing bandwidth
— ATl Inc., pioneered with their HyperZ technology

e Very simple, and very effective
e Divide screen into tiles of 8x8 pixels

e Keep a status memory on-chip
- Very fast access
— Stores additional information that this algorithm uses

e Enables occlusion culling on triangle basis, z-
compression, and fast Z-clears

.. G t .
ArCh ite Ctu re Of 8x8 uncompressed updated
z-values + z,,,, z-values
Z-cull and Z-

.

updated z,,4x

compressed Z-buffer

e Store zmax per tile, and a flag (whether cleared, compressed/
uncompressed)

e Rasterize one tile at a time

e Test if zmin on triangle is farther away than tile’s zmax
— If so, don’t do any work for that tile!!!
— Saves texturing and z-read for entire tile — huge savings!

e Otherwize read compressed Z-buffer, & unpack

e \Write to unpacked Z-buffer, and when finished compress and send
back to memory, and also: update zmax

e For fast Z-clears: just set a flag to "clear” for each tile
- Then we don'’t need to read from Z-buffer, just send cleared Z for that tile

Vertex Data

Vertex Shader Processors

X1800 GTC
r- Setup Engine

Pixel
Shader
Engine

Ultra-Threading
Dispatch Processor

SIUMN DIMIXD L

s|un
SSVIPPY AMIXIL

Hierarchical
Z Test I l

559

F—1

21| o
3 B gz
£ < 3 o
#1 s 315
2 ; 213
o c

v o :
- (V]

o -

hit

E(,eneml Puri)o.sr_- Ru(iister Arra%s—-"

n
p—

I... = .. e Alpha / Fog
.I')m mn;.n-‘gl Compare

Multisample AA glend

R esolve Render

Back-End
Decompress Compress

Color Buffer Cache

Z / Stencil Buffer Cache
ayIes DaNIXay

Taxonomy of Hardware

e \We can do many computations in parallel:

- Pixel shading, vertex shading, geometry shading
® X,y,z,wW r,g,b,a

e But results need to be sorted somewhere
before reaching the screen.

- Operations can be parallelized but result on screen
must be as if each triangle where rendered one by
one in their incoming order (according to OpenGL
spec)

e E.g., for blending (transparency), (z-culling, stencil test)

Taxonomy of hardware

e Need to sort from model space to screen
space

e Gives four major
architectures:

Sorting Taxonomy

Application
" Command] _> Sort-First

. <+ t- 1
_ Sort-middle oreeE
4 Sort_l_ast Fragment > Sort-Last Fragment
_ Sort-Last Image <— Sort-Last Image Composition

Kurt Akeley, Pat Hanrahan, Fall 2001

e Will describe these briefly. Sort-last fragment
(and sort middle) are most common in
commercial hardware

Sorting/dividing work to parallel execution units.

Sort-First

e Sorts primitives before geometry stage
— Screen in divided into large regions

— A separate pipeline is responsible for each
region (or many)

— But vertex shader can change screen location!

e G is geometry, FG & FM is part of rasterizer

- Afragment is all the generated information for a pixel on a
triangle

- FG is Fragment Generation (finds which pixels are inside
triangle)

- FM is Fragment Merge (merges the created fragments with
various buffers (Z, color))

e Not explored much at all

-
p-
~—
2
(=
=
&
P
=
R
et
=]
~—
o
=
=4

Sort-Middle

e Sorts betwen G and R
e Pretty natural, since after G, we know the
screen-space positions of the triangles

e Older/cheaper hardware uses this

- Examples include InfiniteReality (from SGI)
and the KYRO architecture (from Imagination)

e Spread work arbitrarily among G’s

e Then depending on screen-space position, sort to different
R’s
— Screen can be split into “tiles”. For example:

e Rectangular blocks (8x8 pixels)
e Every n scanlines

e The R is responsible for rendering inside tile

e Atriangle can be sent to many FG’s depending on overlap
(over tiles)

l--l

QORT

DISPLAY

Sort-Last Fragment

e Sorts betwen FG and FM II
e XBOX, PS3, nVidia use this

e Again spread work among G's
e The generated work is sent to FG’s

e Then sort fragments to FM's
- An FM is responsible for a tile of pixels

e Atriangle is only sent to one FG, so this avoids

doing the same work twice

- Sort-Middle: If a triangle overlaps several tiles, then the triangle
is sent to all FG’s responsible for these tiles. Results in extra

work

SORT

I N

Sort-Last Image

e Sorts after entire pipeline

e So each FG & FM has a separate frame
buffer for entire screen (Z and color)

H
L.L.l

DISPLAY

e After all primitives have been sent to the pipeline,
the z-buffers and color buffers are merged into one
color buffer

e Can be seen as a set of independent pipelines
e Huge memory requirements!
e Used in research, but probably not commerically

Logical layout of a graphics card:

Setup / Rstr/ ZCull
&0 EIIZ] EoEOlE0=0lEl D 5
Ic D ooioolioo|o
jooj0o oojogiooloo
oo |:u:| Cofooiool £

Application
PCI-E x16
Vertex Vertex Vertex
shader shader e o o Shader
Primitive assembly
Geo Geo Geo On NVIDIA
shader shader shader 2000/9000/200-1000
Clipping /Titan-series: =
> Vertex-, Geometry- and
from a pool off
128/240/480/1536/3072/
3584 processors (=ALUs)
Fragment Fragment Fragment
shader shader shader >
Fragment Fragment . Fragment
Merge Merge Merge

DISPLAY

Current and Future Multicores in Graphics

Cell Broadband Engine Processor

Cell — 2005 PowerXCell 81 Processor — 2008
— 8 cores a 4-float SIMD — 8 cores A 4-float SIMD
— 256KB L2 cache/core — 256KB 1.2 cache

— 128 entry register file
— 3.2GHz

NVIDIA 8800 GTX — Nov 2006
— 16 cores a 8-float SIMD (GTX 280 - 30 cores a 8, junes(lfléz))port
— 16 KB L1 cache, 64KB L2 cache (rumour)

— 1.2-1.625 GHz

Larrabee —”2010”
— 16-24 cores a 16-float SIMD (Xeon Phi: 61 cores, 2012) -
— Core = 16-float SIMD (=512bit FPU) + x86 proc with loops, branches + scalar ops, 4 threads/core
— 32KB Llcache, 256KB L2-cache (512KB/core)
— 1.7-2.4 GHz (1.1 GHz)

NVIDIA Fermi GF100 — 2010, (GF110 2011)
— 16 cores a 2x16-float SIMD (1x16 double SIMD)
— 16/48 KB L1 cache, 768 KB L2 cache

— 128 entry register file

— but has better double precission

NVIDIA Kepler 2012 - 16 cores a 2x3x16=96 float SIMD
NVIDIA Kepler 2013 - 16 cores a 2x6x16=192 float SIMD
NVIDIA Titan X 2016 - 60 cores a 2x4x8=64 float SIMD

NVIDIA year 2020

Exaflop machine:

“« 1 '
e e * “Energy efficiency is
"The Challenge of Future High- key to pe rformance”

Performance Computing” Uppsala
http://media.medfarm.uu.se/play/video/ — F|OpS/W
3261# utma=1.4337140.1361541635.1
361541635.1361541635.1& utmb=1.4.

10.1361541635& utmc=1& utmx=-

& utmz=1.1361541635.1.1.utmcsr=(dir ——

NOC

ect)%7Cutmccn=(direct) === .
%7Cutmemd=(none)& _utmy=- R e
& utmk=104508928 el | 91| |7
Bill Dally, Chief Scientist & sr VP of | e e

Research, NVIDIA, prof. of Engineering, g S N e S S g 1o brocess
stanford Univ. Bl

If we have time...

How create efficient GPU
programs?

Answer: coallesced memory
accesses

Conceptual
layout:

Beyond Programmable Shading

Bad utilization of the
memory bus, which
typically is the
bottleneck!

B = memory element (32
bits) a7

Read 32
coallesced floats
for max
bandwidth usage

Beyond Programmable Shading

Much better utilization
of the memory bus!

B = memory element (32
bits)

38

4 GB RAM Memory

512 bits bus

Beyond Programmable Shading

NVIDIA Fermi — GTX480, 2010. 16 cores

39

e g

|

e

sr s vaa

.

NVIDIA Kepler 15 16 multl -processors (GTX 680, ~2012)

Beyond Programmable Shading

40

r‘* ’

I‘ :
Let Iook a 'S
4 GB RAM
L2 Cache
Core 1 L1
cache
Core X
Core 2 L1
cache
Terminology 192 ALUs or "lanes”
(logically: 6 x 32-SIMD
CPU: Core ALU (SIMD lane) width)
6x32 mul/add per 1-2
NVIDIA: Streaming core clocks
Multiprocessor (6x32 "threads”)
ATI SIMD core stream core SIMD = single

instruction multiple
data

Kepler: 15-16 multi-processors

Beyond Programmable Shading 41

Each core:

* executes one
program
(=shader).

Each cycle:
* 192 flops

e 6x32 SIMD
for up to 4
different instr.

Kepler: 15-16 multi-processors

Beyond Programmable Shading

L1/L2 cache
I oo []

L1/L2 cache

Each core:

* executes one
program
(=shader).

Each cycle:
* 192 flops

e 6x32 SIMD
for up to 4
different instr.

Kepler: 15-16 multi-processors

Beyond Programmable Shading

L1/L2 cache
I oo []

L1/L2 cache

CUDA

* Akernel (=CUDA program) is executed by 100:s-1M:s
threads
— A”warp” = 32 threads, one thread per ALU
— Warps (one to ~32) are grouped into one block

— Block: executed on one core
* One to 48 warps execute on a core

Thread 0

Address 128

Thread 0

Thread 1

Address 132

Address 128

Thread 1

Thread 2

Address 136

Address 132

Thread 2

Thread 3

Address 140

Address 136

Thread 3

Thread 4

Address 144

Address 140

Thread 4

Thread 5

Address 148

Address 144

Thread 5

Thread 6

Address 152

Address 148

Thread 6

Thread 7

Address 156

Address 152

Thread 7

Thread 8

Address 160

Address 156

Thread 8

Thread 9

Address 164

Address 160

Thread 9

Thread 10

Address 168

Address 164

Thread 10

Thread 11

Address 172

Address 168

Thread 11

Thread 12

Address 176

Address 172

Thread 12

Thread 13

Address 180

Address 176

Thread 13

Thread 14

Address 184

Address 180

Thread 15 |

Address 188

Thread 14

Address 184

Thread 15

Address 188

Memory Acceses — Global Memory

4 GB RAM

e Coalesced reads and
writes

* For maximum
performance, each thread
should read from the
same 16-float block (128
bytes)

—i.e., the same cache-line

Fermi

e Global mem accesses.

e One transaction:

e Two transactions:

Aligned and sequential

Addresses: 96 128 160

192 224

256 288

I

T

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

1x 64B at128
1x 64B at 192

1x 64B at128
1x 64Bat 192

1x128B at 128

Aligned and non-sequential

Addresses: 96 128 160

192 224

256 288

| | |

(XTI

Threads:
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128
8x 32Bat160
8x 32Bat192
8x 32Bat224

1x 64Bat 128
1x 64Bat 192

1x128Bat 128

Misaligned and sequential

Addresses: 96 128 160

192 224

256 288

T e

I

Threads: 0
Compute capability: 1.0and 1.1 1.2and 1.3 2.0
Memory transactions: Uncached Cached

8x 32Bat128
8x 32Bat160
8x 32Bat192
8x 32Bat224

1x128Bat 128
1x 64Bat 192
1x 32B at 256

1x128B at 128
1x128B at 256

Figure G-1. Examples of Global Memory Accesses by a Warp,
4-Byte Word per Thread, and Associated Memory
Transactions Based on Compute Capability

Efficient Programming

* If your program can be constructed
this way, you are a winner!

* More often possible than anticipated s-=0 1 2 3

* Stream compaction

4

D

 Prefix sums
* Sorting

=
N O
w O

10 11 12 13 14 15
E F G H

| 1] |

BT -

T~

G) =

10 11 12 13 14 15

input 1|3 |9 |4

output |[o [1 |4 |13

e 19 5100 1 63 79

2

1 5 19 63 79 100

Fermi: 16 multi-processors a 2x16 SIMD width

CHALMERS

Department of Computer Engineering

Shaders

Infinitely extending viewing
frustum formed from
viewer's eye through the
comers of the display screen
window

Polygon in world

projection

// Vertex Shader
#version 130

In vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 model ViewProjectionMatrix;

void main()

{
gl_Position = model ViewProjectionMatrix*vec4(vertex,1);
outColor = color;

¥

N
» Q. N
Z —
/ - T
// Fragment Shader:

#version 130
i vec3 outColor;

out vec4 fragColor;

void main()

{

fragColor = vec4(outColor,1);

Shaders and coallesced memory accesses

GPU

* Each core (e.g. 192-SIMD) executes the
same instruction per clock cycle for either a:

* Vertex shader:
— E.g. 192 vertices bbb

 Geometry shader

— E.g. 192 triangles F*\

* Fragment shader:

— E.g. 192 pixels
in blocks of at least 2x2 pixels
(to compute texture filter derivatives) .

Here is an example of blocks
4x8 = 32 pixels:
— However, many architectures can
execute different instructions, of the L/ \
: / \Y
same shader, for different warps (groups 4
j“‘,k

of 32 ALUs)

Shaders and coallesced memory accesses

GPU
* For mipmap-filtered texture lookups in a

fragment shader, this can provide coallesced
memory accesses.

ARSS

—

EVARVIRVAE "4
|

Thread utilization

* Each core executes one program (=shader)

* Each of the 192 ALUs execute one “thread” (a shader for a
vertex or fragment)

* Since the core executes the same instruction for at least 32
threads (as far as the programmer is concerned)...

e |f(...) ...the core must
—Then,a=b+¢; execute both paths
— . if any of the 32
threads need the if
and else-path.

But not if all need the
same path.

e Else

—a=c+d;

Linearly interpolate (u,/w;, v;/w;, 1/w;) in screenspace

from each triangle vertex 1.
Then at each pixel:
u;, = (w/w), / (1/w),,

Need to know: vip = (VW) / (LW

where ip = screen-space interpolated value from the
triangle vertices.

e Perspective correct
interpolation (e.g. for textures)

e [axonomy:

— Sort first Sort-first
— sort middle . o
_ sort last fragment OIEIIACEE
- sort last image Sort-last
e Bandwidth fragment
Sort-last
- Why it is a problem and how to “solve” it in?ageas

e Texture caching with prefetching
e Texture compression

e Z-compression

e Z-occlusion testing (HyperZ)

e Be able to sketch the architecture of a moder graphics card

CHALMERS Department of Computer Engineering

Need to know:

Vertex-, Geometry-
and Fragment

shaders allocated
from a pool of many
processors (or
ALUs)

Application
PCI-E x16
Vertex Vertex Vertex
shader shader e o o Shader
Primitive assembly
Geo Geo Geo
shader shader shader
Clipping
Fragment Generation
Fragment Fragment Fragment
shader shader shader
[J
v v v
Fragment Fragment . Fragment
Merge Merge Merge

