TRIAL-EXAM
Software Engineering using Formal Methods
TDA293 (TDA292) / DIT270

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Please observe the following:

This exam has 9 numbered pages, plus two pages of the Spin Reference Card.
Please check immediately that your copy is complete

Answers must be given in English

Use page numbering on your pages

Start every assignment on a fresh page

Write clearly; unreadable = wrong!

Fewer points are given for unnecessarily complicated solutions

Indicate clearly when you make assumptions that are not given in the assignment

Good luck!

Exam/Tenta SEFM 2

Assignment 1 PROMELA (12p)

In this assignment, we model a small part of a wifi network. A number of devices,
modelled by the process Device, compete to get access to the network, which however
has limited capacity (3 in our example).

Consider the following PROMELA model.

#define numOfDevices 5
#define limit 3

byte num0fUsers = 0;
chan ch = [0] of { byte, bool };

proctype Device(byte i) {
bool answer;

do
(to be filled in by you)
od
}
active proctype AccessControl () {
byte id;
do
::ch 7 id , _ ->
if
num0fUsers < limit -> ch ! id, true
else -> ch ' id, false
fi
od
}
init {
byte i = 0;
atomic {
do
:: (i >= numOfDevices) -> break
:: else -> run Device(i); i++
od
}
}

Note that we do not actually model the network to be accessed. Rather, we only model
the competing devices, plus a single AccessControl process which grants or denies
access, depending on the number of devices currently accessing the network. A single
channel, called ch, is used to communicate access requests (where the second argument,
does not matter), permissions (true), and denials (false).

Your answers to the questions below should remain valid even if the numbers in the
definitions of numOfDevices and 1imit change.

(For the continuation of this assignment, see next page.)

Exam/Tenta SEFM

(a)

[8p]

Complete the process Device, according to the following instructions. Only the
place marked by “(to be filled in by you)” should be completed, everything else
in the above PROMELA model should be left unchanged. After being granted
access, device n enters the network by incrementing num0fUsers, and printing
out “device n enters network”. Devices whose request gets denied print
out “device n cannot enter now”. Those devices which entered the network
perform activities therein, here modelled by printing out “device n using
network”, and after that leave the network, by decrementing num0fUsers, and
printing out “device n leaves network”. In both cases (whether the device
was denied access, or granted access and entered-used-left the network), the
same device will start over by sending a new (identical) request, and all that
infinitely often.

Your solution has to ensure that numOfUsers never exceeds the 1imit. At the
same time, it would be too restrictive to only allow, for instance, that only one
device uses the network at once. Instead, your solution has to allow runs with
up to limit devices using the network at once.

[1p]
Explain briefly why your solution guarantees that num0fUsers never exceeds
the 1imit.

[1p]
Write a separate process that allows to verify this property with SPIN (without
using LTL).

[1p]
Explain briefly why your solution allows numOfUsers to reach limit.

[1p]
Write a separate process that allows to confirm this using SPIN (without using
LTL).

Exam/Tenta SEFM 4

Assignment 2 Linear Temporal Logic (LTL) (10p)

Consider the following PROMELA model:

byte x
bool b

0;
false

active proctype P() {

do
:: x < 20 -> x = 20; b = true
t:ox >= 0 -> if
:x < 30 -> x++
else -> x = 10
fi
od

}

Take your time to understand the behavior of P. Then consider the following properties,
each of which might or might not hold:

1. b will be true at some point.

x will always be > 10.

At some point, x will be 10.

At some point, x will be 11.

From some point on, x will always be > 10.

x will infinitely often be 11.

Ne e W

If b will never be true, then x will infinitely often be 11.

(a) [Gp]
Formulate each of the properties 1. - 7. in Linear Temporal Logic.

(b) [4p]
For each of the properties 1. - 7., tell whether or not the property is valid in
the transition system given by the above PROMELA model. (You don’t need

to explain your answer.)

Exam/Tenta SEFM

Assignment 3 (Biichi Automata and Model Checking) (8p)

(a)

[2p]
Give the w expression describing the language accepted by the following Biichi
automaton:

a
CWliBO=
b

[3p]
Give the w expression describing the language accepted by the following Biichi

automaton:
a

OWBOS
[3p]

Give a Biichi automaton that accepts exactly those runs satisfying the LTL
formula:

OpVOopAq)

Exam/Tenta SEFM 6

Assignment 4 (First-Order Sequent Calculus) (8p)

Prove the validity of the following untyped first-order formulas, only using the sequent
calculus. You are only allowed to use the rules presented in the SEFM lectures! Provide
the name of each rule used in your proof as well as the resulting sequent, and make
clear on which sequent you have applied the rule. When applying a quantifier rule,
justify that the respective side condition is fulfilled.

(a) [4p]
(Y 25 (—p(x) A —q(2))) = 3 ;5 (p(x) V q(x))
(b) [4p]

3 z; (p(x) V q(2)) = =V 25 (-p(z) A ~q(2)))

Exam/Tenta SEFM 7

Assignment 5 (Java Modeling Language) (10p)

Consider the JAVA classes Interval and IntervalSeq:

public class Interval {
private final int start, end;

public Interval(int start, int end) {
this.start = start;
this.end = end;

}

public int getStart() {
return start;

b

public int getEnd() {
return end;
}
}

/*%

* Class to represent sequence of intervals.
*/
public class IntervalSeq {

protected int size = O;

protected Interval[] contents = new Interval[1000];

VAL
* Insert a new element in the sequence;
* it is not specified in which place
* the element will be inserted
*/
public void insert(Interval iv) {
/..
}

// more methods

3

In the following, observe the usual restrictions under which JAVA elements can be used
in JML specifications.
(For the continuation of this assignment, see next page.)

Exam/Tenta SEFM

(a)

(b)

[3p]
Augment class Interval with JML specification stating that getEnd() is al-

ways > getStart().

[7p]

In class IntervalSeq, the field size holds the number of Interval objects
which have yet been inserted into the IntervalSeq object. All inserted
Interval objects are stored in the beginning of the array. The remaining
cells of the array are null.

Augment class IntervalSeq with JML specification stating the following:

e The size field is never negative, and always < contents.length.

e The contents of the array which are stored below index size are never
null.

o If the size is strictly smaller than contents.length, then all of the
following must hold:

— insert terminates normally
— insert increases size by one

— After insert (iv), the interval iv is stored in contents at some in-
dex i below size. Below index i, the array contents is unchanged.
The elements stored in between i and size were shifted one index
upwards (as compared to the old contents).

o If the size has reached contents.length, insert will throw an
Index0OutOfBoundsException.

Also, add assignable clauses where appropriate.

Exam/Tenta SEFM 9

Assignment 6 (Loop Invariants) (12p)

Consider the following program:

/*Cpublic invariant
@ (\forall int i;
Q (\forall int j;

@ i>=0 && j>=0 && j<=i && i<arr.length;
Q@ arr[jl<=arr([il));
Qx*/

public int[] arr;

/*@public normal_behavior
@ requires true;
@ ensures 7

Qx*/
public int f(int x) {
int r=0;

/*@ loop_invariant 7
Q@ assignable 7
@ decreases 7
@x*/
while(r<arr.length && arr[r]l<x) {
r++;

}

return r;

¥

—

1p| Explain in your own words what f does.

—

3p| Provide the postcondition for method f.

]
]
]
]

—

1p] What fields can f modify? Change the specification of f accordingly.

5p| Provide a loop invariant along with an assignable clause that would be suffi-
cient for proving the postcondition of f.

—

(e) [2p] Provide a decreases clause that would be sufficient for proving termination
of £f.

(total 60p)

=< < = >
<< >>

- +

YA / *

-— ++ - i
d O

(32udpadaad Surpuddsap) siojerdadQ

*SJUWIILD [0} PaUTISSe anJeA [eNIul Aelly
[onrea [enmur =] [N]rea 2d4) - uonere[oop Aeiry
"019Z I SaNn[eA [enIul J[nejdq

[ongea rentur =] rea od4) - uoneIr[Aq

{ suonereoop jo souanbes } owreuodAy yepsdLa
(suq) { - ‘owreu ‘owreu } = edfqu
ueyd
ptd

“QUIYORW Q-7 ¢ B I0] -
(pauStsun $11q , 7€ >) peuStsun
(pauss s11q , 7€) Ut
(pauss s11q ,9[) 210YS
(pougisun sjiq §) @24q
(1q 1) To0q
(1) 319
sadSyeyeq

VSN ‘S01+6 “BIUIOHN[RD ‘0dSIOURI]
ueg “100[YI§ 19a1§ pIBMOH ¢H§ ‘SUOWIWOD) dANBAID 0] I3NJ[B PuUas (q) ‘10 /0
+g/es-ou-£q/s9suedTT /310 SUOUWOD9ATIRDID//:d34Y JISIA ‘DSUDI] SIY) JO
£doo® MaIA O, *aSUIIT ()¢ MI[VAIRYS-[RIDIOWWIOOUON-UONNQLN]Y SUOWWIOD) AR

-91D) A JOpUN PISUDI] ST YIom SIY, LIy-uag (NOJA) TeyddpIoIA £q £00T WSuLdo)

LOOT ‘T 1290100

HY-udg (NOJN) 1eYI3PIOJN

pIe) Q0UdIJY urdg

"G-69.-829%8-T1-8.6/Wo0 * 108utads - nun//:daay
"800¢ ‘1o3uridg

Uayoay)) 1apo wids ayp Jo sapdiouild CIIy-udg N e
‘mwods - qooxutds//:daay
$00T ‘KIS -UOSIPPY ‘IDNUDIY 20U212[2Y

pup 12ullig 12323y 12po uidg 2y "UURWZ[OH [D e

SIIUIIIYAY

‘paredau oq jouued TTNnI pue Ladwe suonouny yJ, e

"Aelre ue surejuod jey) FopadAa e oq ued 11 {Aelire
ue 9q jouued [QUUEYD © Jo p[oy oSessow € Jo adK) oy, e
"$91AQ UI PaI0}s oIk T00q IO 1T JO SABITY e

‘suoIssaIdxa pan[ea-uea[ooq Joj S[OqUIAS IO SI[qeLIeA
uBa[00q 2q JSNW PUB SIS ASLIIMO] M Funels sioy
-uapI 2q Jsnw senwoj 11 ur suonisodoid orwoly e

“IOPIO O[T UI SIP PUB PAJBATIOR IB SISSAV0I] ®

“JuouwIale)s SUTMOT[OF o) pue pIens e uoom)
-9q 1250 UBd SUTABO[IIUI JUOWIE)S Op IO JT U U] e

‘pIensd e 910Joq J0u ‘Op JO FT UE 2J0Joq S[oqe[dJe[d ®
-ad0os mou © 918aId J0U OP SUTTUT PUR SOIOBIA ®
*9s[e} QJe SIAYIO [[B JI A[UO PIJOJIs
SI pIen3 STe UE {PIJI[as 9q SABM[E UBD pIens onIl y e
'ssoo01d e Jo Suruurd
-9q 9} Je 1091J0 ae) SAeM[e SUONBIB[OIP S[qELIBA [BD0T] ®

*991J J09J9-9pIS 9q 1SN SUOIssadxy o

sjeaAe))

saye)s pua pifeaut jo Suntodar ssaxddns q-
suone[orA uonasse jo Suniodar ssaxddns V-

SOLOUS J[QE) Uysey , T NM-
N st y3dop yoreos wnwirxew N

J0119 0} ped 1s9110yS J0J yoreas ojewrxoidde I-
Jo11d 0) yyed)sayI0ys J0J yoreas T-

SIOLIQ [[e JOJ S[Ie) 9JeaId o-

s1o11d [[e odar Qo-

Jorrd YN Joye dois No-

S9[0A0 ssaroid-uou puy T-

ssourrej yeom J-

SO[0A0 oourldaooe puy e-
sjuowngie ugq

AKrowour Jo sajAqedowr N oy dnasn N=WITWINd-
S91AQ U WNWIXLW PIM VI POZIWUTUI U=yNa-
uorssaxdwod joedwoo-ysey OHQ-
uorssaxdwos asde[joo ASJVTI0Dd-

Sumysey aeIsIq FIVISLILA-

Kyayes 103 azmundo ALAIVSA-
S9[0Ad ssa13o1d-uou Jo uond9lap [qeud dNQ-

(0Ie9s ISIY-YIpealq S49a-
sjudwmgie apidwo))

SIUQAQ puas Aefdsip s-
SJUQAQ 9AIO0QI Aefdstp I-
sjuowdie)s Aerdstp d-
so[qeLreA [eqo[3 Aedstp 8-
So[qeLIeA [ed0[Ae[dsIp I-

9l B WOIJ WIB[D JIOAQU JpN[oul N-
wIre[O I9AQU B OJUI J[Y B UL B[AWLIOJ T[T Ue dje[sueny J-
wire[o I9AQU B OJUI B[NULIOJ]/ UB 9Je[suen) J-

N st sdojs Jo Joquinu wnwirxew Nn-

[TeD) YIN YIIAM UoTR[nWIsS paping N3-

[Ten iIm uone[nUIs papms -

UOTJR[NWITS WOPURI I0J PI3s NU-

Surssooordoid 19y wes3oid eowoig Aedsip 1-

uone[NWIIS 9AORIIUI -

OoUD XBIUAS pUB JIOYLIOA 9jeIouad e-
sjudwmgie urdg

91Ty s- I- 8- 1- d- 3- utds
F- ®- ued/- 10 3- e- ued
o-ued uwed o- 258
9TTI ®©- utds

ISSOUQAI']

(... => ... : ...) conditional expression

Predefined
Constants - true, false
Variables (read-only except _):
_ - write-only hidden scratch variable
_nr_pr - number of processes
_pid - instantiation number of executing process
timeout - no executable statements in the system?

Preprocessor

#define name (arguments) string

#undef, #if, #ifdef, #ifndef, #else, #endif
#include "file name”

inline name (arguments) { ... }

Statements
Assignment - var = expression, var++, var--
assert(expression)

printf, printm - print to standard output
%c (character), %d (decimal), %e (mtype),
%o (octal), %u (unsigned), %x (hex)
scanf - read from standard input in simulation mode

skip - no operation
break - exit from innermost do loop
goto - jump to label
Label prefixes with a special meaning:
accept - accept cycle
end - valid end state
progress - non-progress cycle

atomic { ... } - execute without interleaving

d_step { ... } - execute deterministically (no jumping in or
out; deterministic choice among true guards; only the first
statement can block).

{ ... }unless { ... } - exception handling.

Guarded commands

else guard - executed if all others are false.

Processes
Declaration - proctype procname (parameters) { ... }
Activate with prefixes - active or active[N]
Explicit process activation - run procname (arguments)
Initial process - init { ... }
Declaration suffixes:

priority - set simulation priority

provided (e) - executable only if expression e is true

Channels
chan ch = [capacity] of { type, type, ... }

ch ! args send

ch !! args sorted send

ch ? args receive and remove if first message matches
ch 7? args receive and remove if any message matches

ch ? <args> receive if first message matches
ch 7?7 <args> receive if any message matches
ch ? [args] poll first message (side-effect free)
ch ?? [args] poll any message (side-effect free)

Matching in a receive statement: constants and mtype
symbols must match; variables are assigned the values in
the message; eval(expression) forces a match with the
current value of the expression.

len(ch) - number of messages in a channel
empty(ch) / nempty(ch) - is channel empty / not empty?
full(ch) /nfull(ch) - is channel full / not full?

Channel use assertions:
xr ch - channel ch is receive-only in this process
xs ch - channel ch is send-only in this process

Temporal logic

! not
&& and
[l or
-> implies
<=> equivalent to

[1 always

<> eventually

X next

U strong until

V dual of U defined as pvq <-> ! (!pU!q)

Remote references

Test the control state or the value of a variable:
process-name @ label-name
proctype-name [expression] @ label-name
process-name : label-name
proctype-name [expression] : label-name

Never claim

never { ... }.

Predefined constructs that can only appear in a never claim:
_last - last process to execute
enabled(p) - is process enabled?
np_ - true if no process is at a progress label
pc_value(p) - current control state of process
remote references

See also trace and notrace.

Variable declaration prefixes

hidden - hide this variable from the system state

local - a global variable is accessed only by one process
show - track variable in Xspin message sequence charts

Verification
Safety:
spin -a file
gcc -DSAFETY -o pan pan.c
panor ./pan
spin -t -p -1 -g -r -s file

