Nils Anders Danielsson

2016-12-12

» Repetition. Please interrupt if you want to
discuss something in more detail.

» Course evaluation.

Models of computation

» Actual hardware or programming languages:
Lots of (irrelevant?) details.

» In this course: Idealised models of computation.
» PRF, RF.

» X.

» Turing machines.

The Church-Turing thesis

» The thesis:
Every effectively calculable function on the
positive integers can be computed using a
Turing machine.

» Widely believed to be true.
» Many models are Turing-complete.

Comparing sets’ sizes

Injections, surjections, bijections.
Countable (injection to N), uncountable.
Diagonalisation.

vV v v Vv

Not every function is computable.

Inductively defined sets

An inductively defined set:

r e A xs € List A
nil € List A cons z xs € List A

Primitive recursion:

listrec € B— (A — List A—- B — B) —
List A— B

listrec n c nil =n

listrec n ¢ (cons x xs) = ¢ x xs (listrec n ¢ xs)

Inductively defined sets

An inductively defined set:

r e A xs € List A
nil € List A cons z xs € List A

Structural induction (P: a predicate on List A):

P nil
Ve e A. Vs € List A. P xs = P (cons z zs)

Vas € List A. P xs

Quiz

Write down the type of one of the higher-order
primitive recursion schemes for the following
inductively defined set:

n € N [,7 € Tree

leaf n € Tree node [r € Tree

Ty ooy T, 2800) = g (Ty, ..., T,,)

Ty eeey T, SUC T) =

h (371, n?f($17'°'a$na$)a$)

» Abstract syntax (PRF).
» Denotational semantics:

[-] € PRF, — (N" = N)
» Big-step operational semantics:

flol 4 n

PRF

» Strictly weaker than y/Turing machines.
» Some y-computable total functions
are not PRF-computable.

» This is the case for any model of computation
where all programs “terminate”,
given certain assumptions.

Not exactly the x-computable functions

Assumptions:
» Programs: Prog.
» Total, x-computable semantics:

[_] € Prog x N— N

» A coding function:

code € Prog — N

» A y-computable left inverse of code:

decode € N — Prog

Not exactly the x-computable functions

» Define g € N— N by
g n = [[(decode n,n)] + 1.

Note that ¢ is total and y-computable.
» Assume that g € Prog, with

VneN. [(g,n)]=gn.
» We get a contradiction:

g (code g) =
[(decode (code g), code g)] + 1
[(g; code g)] + 1 =
g (code g)_—l— 1

» PRF + minimisation.

» For f e N—N:
f is RF-computable <
f is x-computable <
f is Turing-computable.

e =2
| (€1 €5)
| Az.e
| Cleg,.oye,)
| caseeof {Ci(zy,...,3,) = €;...}
| recz=c¢

» Untyped, strict.
»recr=c¢e¢ ~ letz=c¢cin z.

Abstract syntax.

Substitution of closed expressions.
Big-step operational semantics, not total.
The semantics as a partial function:

[_] € CExzp — CFExp

Representing inductively defined sets.

Coding function:

"_"€ Exp — CExp
A = Var("z ")
l'el 621 — Apply(l_ el ‘I’l‘62‘|>
"Az.e'=Lambda("z ," e ")

Representing expressions

Coding function:

"_'€ Ezp— CExp
“var g’ = const " Var ' (cons " z " nil)
r A r Ll
apply e; e, = const = Apply
(cons " e; ' (cons " e, ' nil))
"lambda z ¢ ' = const " Lambda "
rooon rooa .
(cons " z ' (cons " e nil))

Representing expressions

Coding function:

"_'€ Ezp— CExp
“var g’ = const " Var ' (cons " z " nil)
r A r Ll
apply e; e, = const = Apply
(cons " e; ' (cons " e, ' nil))
"lambda z ¢ ' = const " Lambda "
rooon rooa .
(cons " z ' (cons " e nil))

Alternative type:
"€ Exp A— CExp (Rep A)
Rep A: Representations of programs of type A.

Computability

» f € A— B is xy-computable if
Jde e CExp. YVae A. e a']l="fa"

» Use reasonable coding functions:

» Injective.
» Computable. But how is this defined?

» X-decidable: f € A — Bool.

» X-semi-decidable:
If f/ a = false then [e " a '] is undefined.

Some computable partial functions

» The semantics [_] € CExp — CExp:
Vee CExp. [eval "e '] ="[e] .

» The coding function " _ " € Exzp — CFEup:
Vee€ Exp. [code e’] =""¢e"".

» The “Terminates in n steps?” function
terminates-in € CErp x N — Bool:

Vpe CExp x N.
[terminates-in " p '] =" terminates-in p .

Some non-computable partial functions

The halting problem with self-application,

halts-self € CExp — Bool
halts-self p =
if p " p ' terminates then true else false,

can be reduced to the halting problem,

halts € CExzp — Bool
halts p = if p terminates then true else false.

Some non-computable partial functions

Proof sketch:
» Assume that halts implements halts.
» Define halts-self in the following way:

halts-self = X p. halts Apply(p, code p)
» halts-self implements halts-self,

Ve € CExp.
[halts-self " e '] =" halts-self e,

because Apply(" e ", code "e) "e" e

Some non-computable partial functions

The halting problem can be reduced to:
» Semantic equality:

equal € CExp x CExp — Bool
equal (ey, ¢3) =
if [e;] = [e,] then true else false

» Pointwise equality of elements in
Fun = {f € N— Bool | f is x-computable }:

pointwise-equal € Fun X Fun — Bool
pointwise-equal (f, g) =
if Vn e N. f n=gn then true else false

Quiz

What is wrong with the following reduction
of the halting problem to pointwise-equal?

halts = A p. not (pointwise-equal
Lambda(" n ",
Apply(" terminates-in ",
Const(" Pair ",
Cons(p, Cons(Var(" n), Nil())))))
"M _. False() ")

Bonus question: How can the problem be fixed?

Some non-computable partial functions

The halting problem can be reduced to:
» An optimal optimiser:

optimise € CExp — CFExp

optimise e =
some optimally small expression with
the same semantics as e

» Is a computable real number equal to zero?

1s-zero € Interval — Bool
is-zero x = if [x#] = 0 then true else false

» Many other functions, see Rice's theorem.

» A tape with a head:

Head

|
tlofoft|1]olo|e

» A state.
» Rules.

Turing machines

» Abstract syntax.
» Small-step operational semantics.
» The semantics as a family of partial functions:

[-] € Vim e TM. List ¥,,, — List T,

» Several variants:

» Accepting states.
Possibility to stay put.

» A tape without a left end.
Multiple tapes.

Only two symbols (plus).

v

v

v

Turing-computability

» Representing inductively defined sets.
» Turing-computable partial functions.
» Turing-decidable languages.

» Turing-recognisable languages.

Some computable partial functions

» The semantics (uncurried):

{(tm,xs) | tm € TM,zs € List ¥, } —
List T,

Self-interpreter /universal TM.
» The x semantics.

» The Turing machine semantics is also
x-computable.

» Functions f € N — N are Turing-computable
iff they are y-computable.

Finally

» We have studied the concept of “computation”.
» How can “computation” be formalised?

» To simplify our work: ldealised models.

» The Church-Turing thesis.
» We have explored the limits of computation:

» Programs that can run arbitrary programs.
» A number of non-computable problems.

Good
luck!

