Nils Anders Danielsson

2016-11-28

» A comment about types.
» Rice's theorem.
» Turing machines.

Types

» The language x is untyped.

» However, it may be instructive to see certain
programs as typed.

Types

» Rep A: Representations of programs of type A.
» Some examples:

Zero() : N

" Zero() " : Rep N

" zero' : N

M.z fzo :(A->B)—>A—B

Af. Az Apply(f,z): Rep (A— B) —
Rep A — Rep B

eval :Rep A — Rep A
code : Rep A — Rep (Rep A)
terminates-in : Rep A x N — Bool

" terminates-in ' : Rep (Rep A x N — Bool)

Types

A reduction from last week:

halts = Ap. not (pointwise-equal’
" An. terminates-in Pair(_code p ,n)"

"\ _. False() ")
Expanded:

Ap. not (pointwise-equal’
Lambda(" n
Apply(" terminates-in ",
Const(" Pair ',
Cons(code p,
Cons(Var(" n "), Nil())))))
"A_. False())

If

pointwise-equal’
Rep (N — Bool) x Rep (N — Bool) — Bool

then

halts : Rep A — Bool.

Rice's
theorem

Rice's theorem
Assume that P € CExp — Bool satisfies the
following properties:

» P is non-trivial:
There are expressions €,,,e, e € CETD
satisfying P e, . = true and P e, = false.

» P respects pointwise semantic equality:
Ve, ey € CExp.
if Veée CExp. [e e] = [e, €] then

Then P is x-undecidable.

The halting problem reduces to P:

halts = Ae. case P" A _.reczt =z ' of
{False() —
P"Az. (A_. ey) (eval _code e)
; True() —
not (P " Axz. (A_. e x) (eval _code e))
}

» Is e € CExp an implementation of the
successor function for natural numbers?

» Is e € CExp syntactically equal to
An. Succ(n)?

Turing
machines

Intuitive idea

v

A tape that extends arbitrarily far to the right.

v

The tape is divided into squares.

v

The squares can contain symbols,
chosen from a finite alphabet.

v

A read/write head, positioned over one square.

» The head can move from one square to an
adjacent one.

» Rules that explain what the head does.

Rules

» A finite set of states.
» When the head reads a symbol
(blank squares correspond to a special symbol):
» Check if the current state contains a
matching rule, with:

» A symbol to write.
» A direction to move in.
» A state to switch to.

» If not, halt.

» Turing motivated his design partly by reference
to what a human computer does.

» Please read his text.

Abstract
syntax

Abstract syntax

A Turing machine (one variant) is specified by
giving the following information:
» S: A finite set of states.
> o € St Aninitial state.
» > The input alphabet,
a finite set of symbols with |, ¢ 3.
» [': The tape alphabet,
a finite set of symbols with X U { /} CT.
» 0 e SxI—85xT x{LR}:
The transition “function”.

S is a finite set S50 €S
3 is a finite set ¢
[is a finite set YU{,}CT
yeSxI'= S xT x{LR}

(S,5,%,T,0) € TM

Operational
semantics

Positioned tapes

» Representation of the tape and
the head’s position:

Tape = List I' x List I’
» Here (Is, rs) stands for
reverse ls H rs

followed by an infinite sequence of blanks ().

([2,1],[3,4,.,]) stands for:

Head

!
1121314 1uvlululuw

The symbol under the head

The head is located over the first symbol in rs
(or a blank, if rs is empty):

head; € Tape — I’
heady (ls,rs) = head rs

head € List I' =T’
head || =
head (z :: xs) = x

Writing to the tape:

write € I' = Tape — Tape
write x (Is, rs) = (ls, z = tail rs)

The “tail” of a sequence:

tail € List I' = List '
tail || =]
tail (r:rs) =r1s

Moving the head:

move € {L,R} — Tape — Tape

move R (Is,rs) = (head rs :: s, tail rs)
move L ([],rs) = ([] ,75)

move L (Is,rs) = (tail ls , head ls = 15)

Actions describe what the head will do:
Action =T x {L,R}

Note:
0e SxI'— 8§ x Action

First write, then move:

act € Action — Tape — Tape
act (z,d) t = move d (write x t)

Quiz

Which of the following equalities are valid?

o~~~ T

[S W S—

~— ~— ~—

Y N = — —
TN TN TN

— o

[S —

—" — ~—

/N /N /N

00 x xx
— = - — =
~_ — ~— — ~— ~—
BT BT T
S S S 8 33
~— — ~— — —
e Y N O e)
— 4 1 X X
S oo o oo
S— N N N N N
tttttt
O O O O O O
A A e e A A
A A A A A A

Small-step operational semantics

A configuration consists of a state and a tape:
Configuration = State X Tape

The small-step operational semantics relates
configurations:

0 (s, headr t) = (s, a)
(s,t) — (s, act a t)

Reflexive transitive closure

Zero or more small steps:

*
L — Cy Cy —" C3

c—"c cp —" Cq

The machine halts if it ends up in a configuration ¢
for which there is no ¢’ such that ¢ — ¢’.

The machine’s result

» The machine is started in state s,.
» The head is initially over the left-most square.

» The tape initially contains a string of characters
from the input alphabet ¥ (followed by blanks).

» If the machine halts with the head in the
left-most square, then the result consists of the
contents of the tape, up to the last non-blank
symbol.

A relation between List Y and List T:

(so,[],28) =7 (s, [],ms) B (s,[)irs) — ¢
remove rs = ys

xzs | ys

Removing blanks

The function remove removes all trailing blanks:

remove € List I' — List I’
remove || =]
remove (z :: xs) = cons’ © (remove xs)

cons’ € I' = List I' = List T
cons’ . [] =]
cons’ ¥ 18 =1 = TS

Quiz

Which properties does |} satisfy?

» Is it deterministic (for every Turing machine)?

Vas € List 2. Y ys,zs € List .
xsl ys N xs | zs = ys = zs

» Is it total (for every Turing machine)?

Vas € List . dys € List I'. xs | ys

The semantics as a partial function:

-] € Yitm € TM. List ¥, — List T,
[tm] xs = ys if zs |, ys

An example

» Input alphabet: {0,1}.

» Tape alphabet: {0,1,0,1, ,}.
» States: {sg, 51, So, S5}

» Initial state: s,.

» No result
0000
1111
0101
1010
0101
1010

>
>
>
>
>
>

Accepting
states

Accepting states

Turing machines with accepting states:

S is a finite set S9 €S ACS
Y is a finite set LEY
[is a finite set Yu{, }Cr
deSxI'—=8xIx{L,R}

(S, 59, A, 2,T,8) € TM

A relation on List X2:

(Sos []; 28) —* (s, 1) Ac. (s,t) — ¢
se A

Accept xs

Is the string rejected?

A relation on List X2:

(8o, [], 28) —* (s, 1) Ac. (s,t) — ¢
s¢ A

Reject xs

Note that if the TM fails to halt, then the string is
neither accepted nor rejected.

» Input alphabet: {1}.
» Tape alphabet: {1, ,}.
» States: { sy, 51}
» Initial state: s,.
» Accepting states: {s;}.

(1,1,R)
oWl O
(1,1,R)

» Quiz: Which strings are accepted by this
Turing machine?

Variants

Variants

Equivalent (in some sense) variants:
» Possibility to stay put.
» A tape without a left end.
» Multiple tapes.
» Only two symbols, other than the blank one.

Representing
inductively
defined sets

One method:

"_ e N-— List {1}
"zero' =]
"sucn =1:="n"

Another method (for z # s):

"_"eN— List {z,s}
"zero' =z]

r A

r A
sucn =s§: n

Lists

Assume that A can be represented using a function
"_ '€ A— List ¥ which satisfies the following
properties:

» It is injective.

» There is a function

split € List X — List X X List X
such that, for any z € A, zs € List X,

split ("x " H xs) ="z, zs).

Lists

Assume that A can be represented using a function
"_ '€ A— List ¥ which satisfies the following
properties:

» It is injective.

» There is a function

split € List X — List X X List X
such that, for any z € A, zs € List X,
split ("x " H xs) ="z, zs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Representation of List A (for n # ¢):
"€ List A— List (XU {n,c})
T =]

"roaxs =cx"x H " as

This function also satisfies the given properties.

Quiz

Let n and z both stand for 0, and let s and
¢ both stand for 1. Which list of natural
numbers does 11110101110100 stand for?

» None
» [3,0,2]

>

Turing-
computability

Turing-computable functions

Assume that we have methods for representing
members of the sets A and B as elements of
List 33, where X is a finite set.

A partial function f € A — B is Turing-computable
if there is a Turing machine ¢m such that:

>, =2
» VYac A [tm]"a’'="fa’.

» A language over an alphabet X is
a subset of List 3.

Turing-decidable

A language L over X is Turing-decidable if there is
a Turing machine tm such that:

> X, = 2.
» Vas € List &, if zs € L then Accept, = s.
> Vas € List X. if xs ¢ L then Reject, s

Turing-recognisable

A language L over X is Turing-recognisable if there
is a Turing machine ¢m such that:

> X, = .
» Vas € List 3. zs € L iff Accept, = s.

Summary

» A comment about types.

» Rice's theorem.

» Turing machines:

Abstract syntax.

Operational semantics.

Variants.

» Representing inductively defined sets.
Turing-computability.

v

v

v

v

	Introduction
	Types
	Rice's theorem
	Turing machines
	Abstract syntax
	Operational semantics
	An example
	Accepting states
	Variants
	Representing inductively defined sets
	Turing-computability
	Summary

