@ CHALMERS | @nmmnnnmme

EDA344/DIT 420, CTH/GU

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Marina Papatriantafilou — Transport layer part2 1

Internet transport-layer protocols

e reliable, in-order delivery:
TCP; also provides
— flow control
— congestion control
— connection setup

e unreliable, unordered
delivery: UDP

— no-frills extension of “best-
effort” IP

Both support addressing (multiplexing)

Transport Layer services not available in TCP & UDP: |

Delay, bandwidth guarantees

=
e

KRl
e m?;ﬂ

application
a PO
NEWolRe | aseiroe
data lin
physical
network
netwo data link
data link (&2 @ysical &
physical o -
> (=
PN] ph “
J Q
- J network
LSS data link O
1;‘! e physical %
- " network (@
data link
ysical
network
data link
hysical
p_yc_ network
J W= [data link
- physical

apPRgation
a PO
network
data link
physical

Marina Papatriantafilou — Transport layer part2

Roadmap Transport Layer

e transport layer services
 multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-3

TCP: Overview Rrcs: 793,1122,1323, 2018, 5681

socket
door

¢ full duplex data:

e point-to-point: " bi-directional data flow in same

) connection
— one sender, one receiver . _
= MSS: maximum segment size

/7

% connection-oriented:

= handshaking (exchange of control
msgs) inits sender & receiver
state before data exchange

e reliable, in-order byte steam:

e pipelined:

— TCP congestion and flow
control set window size

s+ flow control:

= sender will not overwhelm
receiver

/7

** congestion control:

= sender will not flood network
with traffic (but still try to

- Maximize throughput)

door

send buffer receive buffer

() [Segment] —» ()

Marina Papatriantafilou — Transport layer part2

3-4

TCP segment structure

32 bhits

&
<«

source port # dest port #

v

counting

AN

sequence number

™~

by bytes
of data

ACK: ACK # valid —__

\\k{lgwledgement number

(not segments!)

e

[~

head|not™ A_PSF receive window

| omsmey

7

Urg data pointer

bytes
rcvr willing

RST. SYN. FIN:/

len Jused |-
op/@((varlable length)

to accept

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

(flow control)

Marina Papatriantafilou — Transport layer part2

3-5

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
* Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
* Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-6

TCP seq. numbers, ACKs

outgoing segment from sender

source port # dest port #

___sequence number |
acknowledgement number
| | rwnd
sequence numbers: chedkeum
—“number” of first byte in [Window size

e IIIIIIIII T

acknowledgements: sender sequence number space

—S€(# of next byte sent sent not- usable not
: ACKed yet ACKed but not usable

expected from other side Cin. et sent
, flight”)
—cumulative ACK incoming segment to sender
source port # dest port #
sequence number

Jl acknowledgement number

A rwnd

checksum

Marina Papatriantafilou — Transport layer part2 3-7

TCP seq. numbers, ACKs

Always ack next in-order expected byte

Host A Host B
e D,
User -
types
‘C’ \

Seq=42, ACK=79,.datai‘C"
host ACKs

/ receipt of ‘C’ ,

__, echoes back
Seq=79, ACK=43,data= 'C

‘C’
host ACKs —
receipt _ _
of echoed ‘C’ Seq_43’ACK_K

Simple example scenario
Based on telnet msg exchange

Host A Host B

S

/

Seq=92, 8 bytes of data

_—
ACK=100
) ol

—— timeout —

Seq=92, 8 bytes of data

ACK=100

e

Marina Papatriantafilou — Transport layer part2

3-8

TCP:
cumulative Ack - retransmission scenarios

Host A Host B Host A Host B
~—— SendBase=92 ~—

Seq=92, 8 bytes of data Seq=92, 8 bytes of data

Seq=100, 20 bytew 3 Seq=100, 20 bytes of dat
()

E ACK=100 15 7Z
S X< / ACK=100
= ACK=120 ACK=120

/ Seq=92, 8

T~ SendBase=100 bytes of data—_

Seq=120, 15 bytes of data SendBase=120 /
\.L
ACK=120

SendBase=120 /

Cumulative ACK (Premature) timeout

Marina Papatriantafilou — Transport layer part2

TCP ACK generation [RFc 1122, RFC 5681]

Event

TCP Recelver action

In-order segment arrival,
no gaps,
everything else already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

In-order segment arrival,
no gaps,
one delayed ACK pending

immediately send single
cumulative ACK

out-of-order segment arrival
higher-than-expect seq. #
gap detected

send (duplicate) ACK, indicating seq. #
of next expected byte

arrival of segment that
partially or completely fills gap

immediate send ACK if segment starts
at lower end of gap

Marina Papatriantafilou — Transport layer part2

3b-10

From RFC 1122

e TCP SHOULD implement a delayed ACK, but an ACK should not be excessively delayed;
in particular, the delay MUST be less than 0.5 seconds, and in a stream of full-sized
segments there SHOULD be an ACK for at least every second segment.

 Adelayed ACK gives the application an opportunity to update the window and perhaps
to send an immediate response. In particular, in the case of character-mode remote
login, a delayed ACK can reduce the number of segments sent by the server by a factor
of 3 (ACK, window update, and echo character all combined in one segment).

* Inaddition, on some large multi-user hosts, a delayed ACK can substantially reduce
protocol processing overhead by reducing the total number of packets to be processed.

 However, excessive delays on ACK's can disturb the round-trip timing and packet
"clocking" algorithms.

e We also emphasize that this is a SHOULD, meaning that an implementor should indeed
only deviate from this requirement after careful consideration of the implications.

Marina Papatriantafilou — Transport layer part2 3-11

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
* Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-12

TCP round trip time, timeout (1)

Q: how to set TCP
timeout value?

** longer than RTT
= but RTT varies

s too short:

application
timeout, nefwork
unnecessary link
retransmissions physical licat
- . application ap segm
% too long: slow transport .‘ tr
reaction to ne‘r.wor'k ne;(riErk
segment loss link !
E physical phydical

Marina Papatriantafilou — Transport layer part2 13

TCP round trip time, timeout (2)

EstimatedRTT = (1-a)*EstimatedRTT + o*SampleRTT

+ exponential weighted moving average: influence of past
sample decreases exponentially fastz s umass s o e ucam

<+ typical value:a =0.125

RTT: gaia.cs.umass.edu to fantaTia.eurecom.fr

RTT (milliseconds

* sampleRT
Estimatedl

DevRTT = (1-B)*DevRTT + -l ;tir:]e e
B*|SampleRTT-EstimatedRTT| (seconds)

(typically, B = 0.25)
Timeoutinterval = EstimatedRTT + 4*DevRTT

| I

estimated RTT “Sa_fg%Lm_a_pgin”

Marina Papatrian Srou — Transport layer part2 3-14

TCP fast retransmit (RFC 5681)

** time-out period often
relatively long:

= |ong delay before resending

lost packet

s* IMPROVEMENT: detect lost
segments via duplicate ACKs

— TCP fast retransmit

if sender receives 3 duplicate
ACKs for same data

resend unacked seg
with smallest seq #
= |ikely that unacked segment

lost, so don’ t wait for

timeout

Host A

timeout

Implicit NAK!
Q: Why need at
least 37

— Seq=92, 8 bytes of data

\seqzloow
\X

ACK=100
ACK=100

ACK=100
el

TSeq=100, 20 bytes of data

\.

)

§

<
<
<«

Marina Papatriantafilou — Transport layer part2

3b-15

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
* Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-16

Connection Management

before exchanging data, sender/receiver “handshake”:
e agree to establish connection (each knowing the other willing

to establish connection)

¢ agree on connection parameters

application

connection state: ESTAB

connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

W/ ¥ network
R

Socket clientSocket =
newSocket(**hostname™, ""port

number™) ;

application

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

network

Socket connectionSocket =
welcomeSocket.accept();

3-17

Marina Papatriantafilou — Transport layer part2

Setting up a connection: TCP 3-way handshake

client state
choose init seq num, X
send TCP SYN msg
SYNSENT

g

V

\

SYN=1, Seq:x\A

server state

LISTEN

choose init seq num, y
send TCP SYN/ACK

/ msg, acking SYN SYN RCVD
SYN=1, Seq=y Reserve buffer
ACK=1; ACKnum=x+1
v received SYN/ACK(x)
ESTAB indicates server is live; /
send ACK for SYN/ACK; |~
this segment may contain ACK=1, ACKnum=y+1
client-to-server data ’
T~ received ACK(y)
indicates client is live M
ESTAB
Transport Layer 3-18

Marina Papatriantafilou — Transport layer part2

TCP: closing a connection

client state J ﬂ server state
ESTAB i ESTAB
l clientSocket.close() \FIN 1
FIN_WAIT 1 can no longer =1, seq=x
n - send but can T v
receive data __— CLOSE_WAIT
ACK=1; ACKnum=x+1 can still
FIN._WAIT_2 wait for silrc\g — send data
_— LAST ACK
il N=1, seq=y
TIME WAIT — 4) can no longer
B ‘ T~ send data
ACK=1; ACKnum=y+1
ti_med wait ~—~— v
(typically 30s) CLOSED
simultaneous FINs
CL"OSED can be handled

RST: alternative way to close connection
immediately, when error occurs

Marina Papatriantafilou — Transport layer part2 3-19

TCP — Closing a connection: Reset

\ 4

RST

e RST is used to signal an error condition and causes an immediate
close of the connection on both sides

e RST packets are not supposed to carry data payload, except for an
optional human-readable description of what was the reason for
dropping this connection.

e Examples:
— A TCP data segment when no session exists
— Arrival of a segment with incorrect sequence number
— Connection attempt to non-existing port
— Etc.

Marina Papatriantafilou — Transport layer part2 3-20

Is TCP stateful or stateless?

Marina Papatriantafilou — Transport layer part2

21

Roadmap Transport Layer

e transport layer services
e multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
* Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-22

TCP flow control

application
might remove data from
TCP socket buffers

application

TCP socket
receiver buffers
... Slower than TCP
. L A
is delivering
(i.e. slower than TCp
sender is sending) e
[] I
- IP
ﬂOW control code .
receiver controls sender, so T '
sender won’ t overflow . | | >
receiver’ s buffer by transmitting ffom sender |
too much, too fast _
receiver protocol stack

Marina Papatriantafilou — Transport layer part2 3-23

TCP flow control

to application process

receiver “advertises free
buffer space by including
rwnd value in TCP header of
receiver-to-sender segments

— RcvBuffer size setvia

socket options (typical default
is 4096 bytes)

— many operating systems
autoadjust RcvBuffer
sender limits amount of

unacked (“in-flight”) data to
receiver’s rwnd value

guarantees receive buffer will
not overflow

— S

RcvBuffer buffered data
rW”T free buffer space

1

TCP segment payloads

receiver-side buffering

source port #

dest port #

sequence number
acknowledgeme
A\

Jo sender

<
<«

checksum

Marina Papatriantafilou — Transport layer part2

3-24

Roadmap Transport Layer

e transport layer services
 multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-25

Principles of congestion control

congestion:

e informally: “too many sources sending too much data
too fast for network to handle”

 manifestations:
— lost packets (buffer overflow at routers)
— long delays (queueing in router buffers)

—— -

il

Marina Papatriantafilou — Transport layer part2

\ Transmission
rate adjusiment

Transmission
Internal

i
fmng icn

Small-capacity Large-capacity Fig. A. Tanenbaum
recEiver —u ﬁ receiver Computer Networks

(a) (b}

Fa

Need for flow control Need for congestion control

Marina Papatriantafilou — Transport layer part2 27

Causes/costs of congestion: scenario 1 (unrealistic)

original data: }‘“in throughput: Kout

» two senders, two
receivers, average rate of Host A
data is A,

% one router, infinite buffers
** output link capacity: R

% (no retransmission in the
“picture” yet)

unlimited shared
output link buffers

Host B "

RI24------------ , ,
i > |
3 : @ |
< i 3 |
j j
AN, R/2 Ay RI2
< maximum per-connection + large delays as arr.ival rate, A,
throughput: R/2 approaches capacity

Marina Papatriantafilou — Transport layer part2 3-28

Causes/costs of congestion: scenario 2

Realistic buffers bounded =>:

) R/2}-ssnnnmmmnmnnnnnnnenec e
duplicates >
h di t R/2,
+ packets can be lost, dropped . come packets are
at router due to full buffers < . retransmissions
. . ! including duplicated
<+ sender times out, sending two . thatare delivered!
copies YL

“costs’ of congestion:

= more work (retrans) for given “goodput” (application-level
throughput)

+ unneeded retransmissions: links carry multiple copies of pkt

Marina Papatriantafilou — Transport layer part2 3-29

Causes/costs of congestion: scenario 3

Consider 4 streams

cr2 | -
il LN

}\'OU'[
e

—A
— 1

A, (el Retransmisions)

another cost of congestion:

» when packets dropped, any “upstream
transmission capacity used for that packet was
wasted!

Marina Papatriantafilou — Transport layer part2 3-30

Approaches towards congestion control

two broad approaches towards congestion control:

_ end-end congestion ~ network-assisted

control: congestion control:

** no explicit feedback * routers provide feedback
from network to end systems eg.

¢+ congestion inferred " asingle bit indicating
from end-system congestion
slbperzd loss, clzlzy = explicit rate for sender

¢ approach taken by TCP to send at

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P Y 3-31

Roadmap Transport Layer

e transport layer services
 multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2

3b-32

TCP congestion control:

__additive increase multiplicative decrease

end-end control (no network assistance), sender limits transmission
How does sender perceive congestion?

= |oss = timeout or 3 duplicate acks
TCP sender reduces rate (Congestion Window) then

cwnd
~ ——— bytes/sec
rate — y

Additive Increase: increase cwnd by 1 MSS every RTT until loss detected

Multiplicative Decrease: cut cwnd in half after loss

To start with: slow start

additively increase window size ...
o ... until loss occurs (then cut window in half)
o 2
AIMD saw tooth €3
behavior: probing 85 |-

for bandwidth © &

o g

ge

5 9

>

time

Marina Papatriantafilou — Transport layer part2 3-33

TCP Slow Start

** when connection begins, Host A Host B

. f ‘
increase rate exponentially %Z ﬂ

until first loss event: on
W

= jnitially cwnd =1 MSS

= double cwnd every RTT
QUr segments

«—RTT—

= done by incrementing cwnd for
every ACK received

* summary: initial rate is slow
but ramps up exponentially
fast

time

Marina Papatriantafilou — Transport layer part2 3-34

TCP cwnd:

: ' | : |

Q: when should the

exponential
increase switch to 14—
linear? o 12-
A:when cwnd getsto €3 '°”
. = 8—
1/2 of its value 55 _
before timeout. Se N

S
Implementation:

Reno: loss indicated by
timeout or 3 duplicate ACKs:
cwnd is cut in half; then grows
linearly

TCP Reno

ssthresh

ssthresh

TCP Tahoe

/
0‘0

variable ssthresh (slow start
threshold)

on loss event, ssthresh is set to
1/2 of cwnd just before loss event

*

L)

P T T T 1T
5 6 7 8 9 1011 121

Transmission round

I
5

I I
314 1
Non-optimized: loss indicated by timeout:
cwnd set to 1 MSS;

window then grows as in slow start, to
threshold, then grows linearly

Marina Papatriantafilou — Transport layer part2

3-35

Fast recovery (Reno)

CWND & Point of network congestion
Y ISiowstart ~ &~~~ /1 """ / """"" Slowstartand A / T / """" / """
congestion
B C E avoidance E F G
S ®
Y2 - / 22
Fast Fast D Fast Fast Fast
A fecovery and recovery and £3 D recoveryand recoveryand recovery and
congestion congestion = £ congestion congestion congestion
1 _/ avoidance avoidance _/ avoidance avoidance avoidance
-
Point of network congestion

Session’s experience

Time 16

Summary: TCP Congestion Control

duplicate ACK new ACk

cwnd = cwnd + MSS *(MSS/cwnd)

dupACKcount++ New ACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount=0

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0 >

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

v

t—= 3 7
(P timeout
'ls‘ < S)'esh = cwnd/2 :
=220 wid = 1 MSS duplicate ACK
(7)) timeout dupACKcount = 0 dupACKcount++
- 'esh = cwnd/2 4 retransmit missing segment o
cwnd = 1 MSS
dupACKcount=0 IR
retransmit missing segment _ .(Cﬁr_
timeout)\
ssthresh = cwnd/2
cwnd =1 New ACK
dupACKcount = 0 B ———_—.
dupACKcount == retransmit missing segment dﬁ\[,)ngIchoSJn{iso dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

: : : Transport Layer
Marina Papatriantafilou — Transport layer part2 3) 3-37

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

J bottleneck
“ router

g :
TCP connection 2 capacity R

Transport Layer

Marina Papatriantafilou — Transport layer part2 3-38

How many windows does a TCP’s sender maintain?

\ Transmission
rate adjusiment

Transmission
relwork

Fa

Internal
congestian
S Ty

Small-capacity Large-capacity Fig. A. Tanenbaum
recEiver —u ﬁ receiver Computer Networks

(a) (b}

Need for flow control Need for congestion control

Marina Papatriantafilou — Transport layer part2

39

TCP combined flow-ctrl, congestion ctrl windows

sender sequence number space
Mln{cwnd rwnd}

TCP sending rate:

||||||||| IIIIIIIIIIIIII\ O s i o
rwnd} bytes, wait RTT for

ACKS, then send more

last byte ‘ Iast byte

yet ACKed bytes
(“in-

~flight”) o
sender limits transmission:

LastByteSent- _ pin{cwnd, rwnd}
LastByteAcked

s cwnd is dynamic, function of perceived network
congestion,

** rwnd dymanically limited by receiver’s buffer space

Transport Layer

Marina Papatriantafilou — Transport layer part2 3-40

Roadmap Transport Layer

e transport layer services
 multiplexing/demultiplexing
e connectionless transport: UDP
e principles of reliable data transfer
e connection-oriented transport: TCP
— reliable transfer
 Acknowledgements
* Retransmissions
e Connection management
e Flow control and buffer space
— Congestion control
e Principles
e TCP congestion control

Marina Papatriantafilou — Transport layer part2 3b-41

Chapter 3: summary

¢ principles behind transport
layer services:

= Addressing

= reliable data transfer
= flow control

= congestion control

¢ instantiation, implementation
in the Internet
= UDP
= TCP

next:

leaving the network
“edge” (application,
transport layers)

into the network
“core”

Marina Papatriantafilou — Transport layer part2

3-42

Some review questions on this part

Describe TCP’s flow control
Why does TCp do fast retransmit upon a 3rd ack and not a 2nd?

Describe TCP’s congestion control: principle, method for detection
of congestion, reaction.

Can a TCP’s session sending rate increase indefinitely?
Why does TCP need connection management?

Why does TCP use handshaking in the start and the end of
connection?

Can an application have reliable data transfer if it uses UDP? How or
why not?

Marina Papatriantafilou — Transport layer part2 3b-43

Reading instructions chapter 3

e KuroseRoss book

Careful Quick

3.1,3.2,3.4-3.7 3.3

e Other resources (further study)

— Eddie Kohler, Mark Handley, and Sally Floyd. 2006. Designing DCCP: congestion
control without reliability. SSIGCOMM Comput. Commun. Rev. 36, 4 (August 2006),

27-38.D0I=10.1145/1151659.1159918
http://doi.acm.org/10.1145/1151659.1159918

— http://research.microsoft.com/apps/video/default.aspx?id=1
04005

— Exercise/throughput analysis TCP in following slides

Marina Papatriantafilou — Transport layer part2 3-44

Extra slides, for further study

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-45

TCP throughput

e avg. TCP throughput as function of window size, RTT?

— ignore slow start, assume always data to send

e W: window size (measured in bytes) where loss occurs
— avg. window size (# in-flight bytes) is %4 W
— avg. trhoughput is 3/4W per RTT

avg TCP trhoughput =S W bytes/sec

W—A/

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P Y

3-46

TCP Futures: TCP over “long, fat pipes’

e example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

 requires W = 83,333 in-flight segments
 throughput in terms of segment loss probability, L

[Mathis 1997]:
_1.22 - MSS
TCP thrOughpUt = RTT ,\/f

=» to achieve 10 Gbps throughput, need a loss rate of L =
2:101% — g very small loss rate!

 new versions of TCP for high-speed

. . . Transport Layer
Marina Papatriantafilou — Transport layer part2 P Y 3-47

Why is TCP fair?

two competing sessions:

¢ additive increase gives slope of 1, as throughout increases

** multiplicative decrease decreases throughput proportionally

R equal bandwidth share
/
/
3
5 loss: decrease window by factor of 2
> congestion avoidance: additive increase
_CE) loss: decrease window by factor of 2
g , ngestion avoidance: additive increase
C
9
3]
Q
c
Cgmection 1 throughput R

Marina Papatriantafilou — Transport layer part2 3-48

Fairness (more)

a
Fairness and UDP Fairness, parallel TCP

connections

** multimedia apps often *»* application can open

do not use TCP multiple parallel
= do not want rate connections between two
throttled by hosts
congestion control *** web browsers do this
& instead use UDP: “*e.g., link of rate R with 9

existing connections:

. : :
send audio/video at = new app asks for 1 TCP, gets rate
constant rate, tolerate R/10

packet loss = new app asks for 11 TCPs, gets R/2

Marina Papatriantafilou — Transport layer part2 3-49

TCP delay modeling (slow start — related)

Q: How long does it take to Notation, assumptions:
receive an object from a Web .« Assume one link between client
server after sending a and server of rate R
request? e Assume: fixed congestion

window, W segments

e S: MSS (bits)

 O: object size (bits)

e no retransmissions (no loss, no
corruption)

e TCP connection establishment
e data transfer delay

e Receiver has unbounded buffer

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-50

TCP delay Modeling: simplitied, tixed
window

ritiate TCF
commection Wk R initiate TCF
et connection ,
T RTT
J—l‘"‘-w—m“-”
cquest T
et | RTT
request

SIR. object

CH
WA
RTT
teturns . : ‘\
// IStaEk

returns

T,uélne t time
e ¥ v al e at server

at client attsif;—ier CC(SC 2: WS/R < RTT + S/R-
Case 1: WS/R>RTT + S/R: wait for ACK after sending

ACK for first seg.men’r'in window . dow's worth of data sent
returns before window's worth delay = 2RTT + O/R

of data nsent . . i
delay = 2RTT + O/R (K-DIS/R +RTT - WS/R]

O : :
Marina Papatriantafilou — Transpordelay = —+2RTT + Z idleTime 3b-51

TCP Delay Modeling: Slow Start

initiate TCP

connection

Delay components: —_—
« 2 RTT for connection estab request
and request ovlect

* O/R to transmit object \
- time server idles due to slow RIT
start

¢ first window
=S/R

second window
=2S/R

third window

Server idles: - 4S/R

P = min{K-1,Q} times

v
A

where

- Q = #times server stalls
until cong. window is larger
than a “full-utilization" window

fourth window
= 8S/R

\4

(if the object were of "\ complete
unbounded Slze). dgl?\iz(r:éd Examp|e: transmission
. . * O/S = 15 SegmenTS time at
-K = #(lncremenTC('-Slzed) timeat ¥ = 4 windows server
congestion-windows that Q=2
cover” the object. » Server idles P = min{K-1,Q} = 2 times
3: Transport Layer 3b-52

Marina Papatriantafilou — Transport layer part2

TCP Delay Modeling (slow start - cont)

%+ RTT = time from when server starts to send segment

until server receives acknowledgement

initiate TCP
connection

\

2"‘1% = time to transmit the kth window equest
object ~ "] y first window
=S/R

4
RTT

{%+ RTT —2¢* %} = idle time after the kth window +

second window
=2S/R

third window
=4S/R

fourth window
=8S/R

P
delay :%+ 2RTT + > idleTime,

p=1

O

P
= — +2RTT +Z[§+ RTT — 241>
R ~="R

v
\ complete

object transmission

S delivered

:%+ 2RTT + P[RTT +%]— (2° -1)

__ time at
R time at server
client

Marina Papatriantafilou — Transport layer part2 3: Transport Layer 3b-53

TCP Delay Modeling

Recall K = number of windows that cover object

How do we calculate K ?

K=min{k:2°S+2'S+-.-+2“'S >0}
=min{dk:2° +2' +---+2“*>0/S}

=min{k : 2“ -1> %}

=min{k :k > Iogz(%+1)}

= [Iogz(%ﬂﬂ

Calculation of Q, number of idles for infinite-size object,

is similar.

Marina Papatriantafilou — Transport layer part2

3b-54

