@ CHALMERS | @nmmnnnmme

EDA344/DIT 420, CTH/GU

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Marina Papatriantafilou — Application layer partl 1

Chapter 2: Application Layer

Chapter goals:
e conceptual + implementation

» specific protocols:

aspects of network — http, (ftp), smtp, pop, dns,
application protocols p2p file sharing
— client server, p2p * programming network
paradigms (we will study applications
the latter seperately) — socket programming

— service models

e learn about protocols by
examining basic application-
level protocols (more will
come later, when studying
real-time traffic aspects)

|

Marina Papatriantafilou — Application layer partl

Roadmap

e Applications and their needs, vs Internet trasport layer
services
e The http protcocol

— General description and functionality
— Authentication, cookies and related aspects
— Caching andp roxies

e (continuation with more applications: next lecture)

Marina Papatriantafilou — Application layer partl 3a-3

Applications and application-layer protocols

Application: communicating, distributed

processes

— running in network hosts in “user spagiraseort

— data link
exchange messages vsica 13
— e.g., email, file transfer, the Web
Application-layer protocols
— Are only one “piece” of an application -

others are e.g. user agents.
* Web:browser A

——

¢ E-mail: mail reader N

& e

2

S

e streaming audio/video: media player T (E’||
— define messages exchanged by appsand == ‘ alpp“mﬂon
actions taken ' ‘ Tr'a:spor"(‘r
: netrwor
— use services provided by lower layer Qﬂfﬂ:\i @ o | datalink

hysical
protocols physical g g Prysic

Marina Papatriantafilou — Application layer partl

Client-server paradigm

Typical network app has two pieces:
: —
client and server R

network

data link
CIient' Ehisical n

[initiates contact with server
(“speaks first”)

[typically requests service from
server,

[for Web, client is implemented in
browser; for e-mail, in mail reader

Server: transport
: network

. . . data link

7 provides requested service to client ohysical

3 e.g., Web server sends requested
Web page, mail server delivers e-
mail

Marina Papatriantafilou — Application layer partl

Auxiliary terms ++

Q: how does a process

socket: Intern.et a.ppllcatlon “identify” the other
programming interface process with which it
— 2 processes communicate by wants to communicate?
sending data into socket, — IP address of host running
reading data out of socket other process
(like sending out, receiving in — “port number” - allows

via doors) receiving host to determine
to which local process the
message should be

delivered
—— -i";T_

Controlled by et | Gontrolled by

application S, application)

developer Process || developer .. more. lGTZI",
Contolle by || TOR with| ————"— — [ToR with |- Gonlrlled by withTCP/UDP + cf

operating urrers, L urrers, || operating ; :

systern | variables variables || systemn prggrqmmlng pI"OJZCT
Host or server Host ar server 9U|del|nes

Marina Papatriantafilou — Application layer partl

Properties of transport service of interest to the app

Data loss
e some apps (e.g., audio) can
tolerate some loss

e other apps (e.g., file transfer,
telnet) require 100% reliable
data transfer

e Connection-oriented vs
connectionless services

Bandwidth, Timing, Security

[some apps (e.g., multimedia) require
minimum amount of bandwidth

[some apps (e.g., Internet telephony,
interactive games) require low delay
and/or low jitter

[other apps (elastic apps, e.g. file
transfer) make use of whatever
bandwidth, timing they get

[some apps also require
confidentiality and integrity (more in
network security)

Marina Papatriantafilou — Application layer partl

Transport service requirements of common apps

Application Dataloss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no-loss elastic no

real-time audio/video

loss-tolerant

audio: 5Kb-1Mb yes, 100’s msec
video:10Kb-5Mb

stored audio/video

loss-tolerant

rather similar yes, few secs

Interactive games

loss-tolerant

few Kbps up yes, 100’s msec

financial apps

no loss

elastic yes and no

Marina Papatriantafilou — Application layer partl

Services by Internet transport protocols

TCP service: ,
. : UDP service:
* connection-oriented: setup
required between client, server * connectionless
e reliable transport between e unreliable transport between
sending and receiving process sending and receiving process

+ a bit more, to focus in the TCP study . 4oes not provide: flow control

. ’ . . .
* flow control: sender won't congestion control, timing, or

overwhelm receiver bandwidth guarantee
e congestion control: throttle

sender when network overloaded

e does not provide: timing,
minimum bandwidth guarantees

Q: why bother? Why is there a
UDP?

|

Marina Papatriantafilou — Application layer partl

Internet apps: their protocols

Application Underlying
Application layer protocol transport protocol
e-mail » smtp [RFC 821] TCP
remote terminal access telnet [RFC 854] TCP
Web » http [RFC 2068] TCP
file transfer ftp [RFC 959] TCP
streaming multimedia proprietary TCP or UDP
(e.g. RealNetworks)
remote file server NSF TCP or UDP
Internet telephony SIP, RTP, typically UDP, TCP

proprietary (e.d., Skype) also possible

nslookup and many others

» DNS
[RFC 882, 883,1034,1035] UDP

2 *P'P'l'i'CU‘H'Uﬂ":U‘YEI

Marina Papatriantafilou — Application layer partl 10

Roadmap

e Applications and their needs, vs Internet trasport layer
services
 The http protcocol

— General description and functionality
— Authentication, cookies and related aspects
— Caching andp roxies

e (continuation with more applications: next lecture)

Marina Papatriantafilou — Application layer partl 3a-11

The Web: some jargon

e Web page:
— consists of “objects”
— addressed by a URL

e Most Web pages consist
of:
— base HTML page, and

— several referenced objects.

e URL has two components:
host name and path
name:

www . someSchool .edu/someDept/pic.

User agent for Web is
called a browser:

— MS Internet Explorer

— Netscape Communicator

Server for Web is called
Web server:
— Apache (public domain)

— MS Internet Information
Server

— Netscape Enterprise Server

gif

Marina Papatriantafilou — Application layer partl

|

12

HTTP overview

HTTP: hypertext transfer
protocol

e Web’ s application layer
protocol PC running

e client/server model Firefox browser

— client: browser that
requests, receives,
(using HTTP protocol)
and “displays” Web
objects

— server: Web server
sends (using HTTP ,
protocol) objects in iphone running
response to requests Safari browser

C_——)
e server

Application Layer

Marina Papatriantafilou — Application layer partl

running
Apache Web
server

HTTP overview (continued)

uses TCP:

e client initiates TCP connection
(creates socket) to server, port
80

* server accepts TCP connection
from client

e HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

e TCP connection closed

HTTP is “stateless ”

e server maintains no
information about
past client requests

- aside -
protocols that maintain

“state” are complex!
< past history (state) must
be maintained
< if server/client crashes,
their views of “state”
may be inconsistent, must
be reconciled

Marina Papatriantafilou — Application layer partl

http example

Suppose user enters URL (contains text,

www.someSchool.edu/someDepartment/home.index references to 10
jpeg images)
1a. http client initiates TCP connection
to http server (process) at

www.someSchool.edu. Port 80 is
default for http server.

1b. http server at host
www.someSchool.edu waiting for
TCP connection at port 80.
“accepts” connection, notifying

' client
2. http client sends http reguest

message (containing URL) into

TCP connection socket 3. http server receives request
message, forms response message
containing requested object
(someDepartment/home.index),
sends message into socket

time

| 2: Application Layer

Marina Papatriantafilou — Application layer partl 15

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
’rin4€ jpeg objects

4 http server closes TCP connection.

Marina Papatriantafilou — Application layer partl

|

16

Non-persistent and persistent connections

Non-persistent
e HTTP/1.0

e server parses request,
responds, and closes TCP
connection

e new TCP connection for each
object => extra overhead per
object

But most 1.0 browsers use
parallel TCP connections.

Persistent

default for HTTP/1.1

on same TCP connection:
server parses request,
responds, parses new request,..

Client sends requests for all
referenced objects as soon as it
receives base HTML;

Less overhead per object

Objects are fetched
sequentially

But can also pipeline

requests, to parallelize
(resembles non-persistent
optimised behaviour)

Marina Papatriantafilou — Application layer partl

2 *P‘P'l'i'CU‘H'Uﬂ":UYEI

17

http request message: general format

f | request
line

header
lines

Entity Body

Marina Papatriantafilou — Application layer partl

|

18

HTTP request message

* two types of HTTP messages: request, response

e HTTP request message:
— ASCII (human-readable format)

carriage return character

: line-feed character
request line

(GET, POST, —— GET /index.html HTTP/l-l\r\FZl
HEAD commands) Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
header Accept: text/html,application/xhtml+xmI\r\n
: Accept-Language: en-us,en;g=0.5\r\n
lines | Accept-Encoding: gzip,deflate\r\n
Accept-Charset: 150-8859-1,utf-8;g=0.7\r\n

carriage return, Keep-Alive: 115\r\n
line feed at start | Connection: keep-alive\r\n
— \r\n

of line indicates
end of header lines

A M 4 1
r\PPIIUuLIUI 1 |.qu|

Marina Papatriantafilou — Application layer partl 19

Method types

HTTP/1.0: HTTP/1.1:

e GET * GET, POST, HEAD

. POST . PUT

e HEAD — uploads file in entity
— asks server to leave body to path specified

requested object out in URL field
of response e DELETE
— deletes file specified in
the URL field

A M 4 1
I_\'J'JII\J(&LIUI 1 |.qu|

Marina Papatriantafilou — Application layer partl 20

HTTP response message

status line

(protoc
status coecje\; HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
status phrase) Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: '""17dc6-a5c-bf716880''\r\n
header Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n

lines Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=150-8859-1\r\n
\r\n
__data data data data data ...
data, e.g., |
requested For more headers:

www.w3.org/Protocols/HT TP/1.1/draft-ietf-http-v11-spec-01.html

HTML file

Marina Papatriantafilou — Application layer partl 21

http response status codes

In first line in server->client response message.
A few sample codes:

200 OK
— request succeeded, requested object later in this message
301 Moved Permanently

— requested object moved, new location specified later in this
message (Location:)

400 Bad Request
— reguest message not understood by server

404 Not Found

— requested document not found on this server

505 HTTP Version Not Supported

|

Marina Papatriantafilou — Application layer partl 22

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent
to port 80 at cis.poly.edu

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1 by typing this in (hit carriage

Host: cis.poly.edu return twice), you send
this minimal (but complete)

| GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HT TP request/response)

A IH + 1
I_\P'JII\JC&LIUI 1 I_uycl

Marina Papatriantafilou — Application layer partl

Roadmap

e Applications and their needs, vs Internet trasport layer
services
e The http protcocol

— General description and functionality
— Authentication, cookies and related aspects
— Caching andp roxies

e (continuation with more applications: next lecture)

Marina Papatriantafilou — Application layer partl 3a-24

User-server interaction: authentication

Authentication goal: control access to
server documents

client server

e http is stateless: client must
present authorization in each
request

e authorization: typically name,
password

— authorization: header line
in request

— if no authorization presented,
server refuses access, sends

WWW authenticate:
header line in response
tTime

Browser caches name & password so
that user does not have to repeatedly enter it.

Marina Papatriantafilou — Application layer partl 25

Cookies: keeping “state”

Cookie file
ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

Cookie file

amazon: 1678
ebay: 8734

—{ usual http request msg
cookie: 1678

— specific

client server
usual http request msg . server %e%)
usual http response + creates ID ¢, “¢,
< Set-cookie: 1678 | 1678 for user g '{‘%(,

cookie-

usual http response msg

action

usual http request msg
cookie: 1678

cookie-

\»

spectific

—

usual http response msg

action

Marina Papatriantafilou — Application layer partl

26

Cookies (continued)

cookies can bring:

authorization
shopping carts
recommendations
user session state

: — aside
Cookies and privacy:

7 cookies permit sites to
learn a lot about you

7 you may supply name
and e-mail to sites
7 search engines use

cookies to learn yet
more

7 advertising companies
obtain info across
sites

Marina Papatriantafilou — Application layer partl

27

Roadmap

e Applications and their needs, vs Internet trasport layer
services
e The http protcocol

— General description and functionality
— Authentication, cookies and related aspects
— Caching and proxies

e (continuation with more applications: next lecture)

Marina Papatriantafilou — Application layer partl 3a-28

Conditional GET: client-side caching

client server

* Goal: don’t send object if client

has up-to-date stored (cached)
e client: specify date of cached not
copy in http request - modified
IT-modified-since:
<date>

e server: response contains no
object if cached copy up-to-

date:
HTTP/1.0 304 Not ObJ@CT
Modified modified

Marina Papatriantafilou — Application layer partl

Web Caches (proxy server)

Goal: satisfy client request without involving origin server

e user configures browser: Web

accesses via web cache origin
e client sends all http requests to web server
cache; the cache(proxy) server
o (proxy) Proxy
— if object at web cache, return @ /77‘7. 0@6" n
bject in http response e Server
ob) P resp client /77‘fp Yesy
: - A
— else request object from origin Csp

oA XQ
server (or from next cache), then e n A\
return http response to client

e Hierarchical, cooperative caching,
ICP: Internet Caching Protocol
(RFC2187)

origin
server

no

Marina Papatriantafilou — Application layer partl 30

Why Web Caching?

Assume: cache is “close” to client
(e.g., in same network)

e smaller response time: cache
“closer” to client

e decrease traffic to distant
servers

— link out of institutional/local
ISP network often bottleneck

 Important for large data
applications (e.g. video,...)

e Performance effect:

@ origin
@ servers

public

Internet _@

1.5 Mbps
access link

institutional
network ? 10 Mbps LAN
|

)

institutional

E(delay)=hitRatio*LocalAccDelay + (1-hitRatio)*Remotézﬁ\cchceDelay

Marina Papatriantafilou — Application layer partl

2 *P'P"'i'CUﬁ'Uﬂ'tU‘YEI

31

Caching example:

assumptions:
+ avg object size: |00K bits

% avg request rate from browsers to

origin servers:|5/sec

- i.e.avg data rate to browsers: .50
Mbps

« RTT from institutional router to any

origin server: 2 sec
+ access link rate: 1.54 Mbps

consequences:
< LAN utilization: 1.5% prablem!
+ access link utilization
+ total delay = Internet delay +
access delay + LAN delay
= 2 sec + minutes + quite_small

origin
servers

1.54 Mbps
access link

LAN

Application Layer 29

Marina Papatriantafilou — Application layer partl

Caching example: faster access link

assumptions:
+ avg object size: |00K bits
+ avg request rate from browsers

to origin servers:|5/sec
- i.e.avg data rate to browsers: .50
Mbps
« RTT from institutional router to
any origin server: 2 sec

+ access link rate~+354Mbps
consequences: 154 Mbps access link
« LAN utilization: 1.5% instituti
<+ access link utilization =-992%

origin
servers

154 Mbps

« total delay = Internet delay + 9.9% HAN
access delay + LAN delay
= 2se inutes + usecs
msecs

Cost: increased access link speed (not cheap!)

IH i 1
ApMHLatvil Laycl

Marina Papatriantafilou — Application layer partl 33

Caching example: install local cache

assumptions:
+ avg object size: |00K bits
+ avg request rate from browsers

to origin servers:|5/sec
- i.e.avg data rate to browsers: .50

Mbps
« RTT from institutional router to
any origin server: 2 sec
+ access link rate: 1.54 Mbps

consequences:
« LAN utilization: 1.5%

+ access link utilization -
« total delay 5

How to compute link
utilization, delay?

Cost: web cache (cheap!)

origin
servers

1.54 Mbps
access link

Marina Papatriantafilou — Application layer partl

A M 4 1
ApMHLatvil Laycl

34

Caching example: install local cache

Calculating access link utilization,
delay with cache:
e suppose cache hit rate is 0.4

— 40% requests satisfied at cache, 60%
requests satisfied at origin

origin
servers

+ access link utilization:
= 60% of requests use access link
+ data rate to browsers over access link
= 0.6%1.50 Mbps = .9 Mbps 1.54 Mbps
= utilization = 0.9/1.54 = .58 access link

+ total delay

= = (0.6 * (delay from origin servers)
+0.4 * (delay when satisfied at
cache)

= =0.6 (2.01) + 0.4 (~msecs)

= =~ |.2 secs

" |ess than with 154 Mbps link (and
cheaper too!)

A M 4 1
ApMHLatvil Laycl

Marina Papatriantafilou — Application layer partl 35

Roadmap

e Applications and their needs, vs Internet trasport layer
services
e The http protcocol

— General description and functionality
— Authentication, cookies and related aspects
— Caching andp roxies

e (continuation with more applications: next lecture)

Marina Papatriantafilou — Application layer partl 3a-36

