

Course on Computer Communication and Networks

Lecture 1 & part of lecture 2
Chapter 1: Introduction

EDA344/DIT 420, CTH/GU

Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
- Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
- Security prelude

the Internet: "nuts and bolts" view (1)

server

wireless laptop

cellular handheld

access points wired links

millions of connected computing devices: *hosts* = end systems

running *network apps*

- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth
- *routers:* forward packets (chunks of data)

the Internet: "nuts and bolts" view (2)

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype,Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet

the Internet: service view

- communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, ecommerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

Internet standards

- RFC: Request for comments
- IETF: Internet Engineering Task Force

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
 - edge & core of any big network:
 - types of service, ways of information transfer, routing
 - Internet layers & Logical vs physical communication
 - Performance:
 - delays, loss
 - Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
 - Security prelude

Networks are complex

- many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - hardware, software

Question:

Is there any hope of *organizing* structure, study, development of networks?

Layers of abstraction

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance/es
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

Terminology: Protocols, Interfaces

- Each layer offers services to the upper layers (shielding from the implementation details)
 - service interface: across layers in same host
- Layer n on a host carries a conversation with layer n on another host
 - host-to-host interface: defines messages exchanged with peer entity
- Network architecture (set of layers, interfaces) vs protocol stack (protocol implementation)

Fig. 1-10. The philosopher-translator-secretary architecture.

What's a protocol?

a human protocol and a computer network protocol:

host-to-host interface: defines

- messages exchanged with peer entity: format, order of msgs sent and received among network entities
- actions taken on msg transmission, receipt

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
 - Internet layers & Logical vs physical communication
 - Performance:
 - delays, loss
 - Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
 - Security prelude

A closer look at (any big) network's structure:

- network edge: applications and hosts
- access networks,
 physical media: wired,
 wireless
 communication links
 - network core:
 - interconnected routers
 - network of networks

The network edge:

end systems (hosts):

- ☐ run application programs e.g. in Internet Web, email, ...
- ... based on network services available at the edge

Basic types of service offered by the network to applications:

connection-oriented: reliable delivery of
the data in the order they are sent
connectionless: "best effort" delivery of
the data in arbitrary order

Q: can we think of more types of service?

The Network Core

- mesh of interconnected routers
- fundamental question: how is data transferred through net?
- packet-switching: data sent thru net in discrete "chunks"

Network Core: Packet Switching

each end-end data stream divided into packets

- packets share network resources
- resources used as needed

store and forward:

- packets move one hop at a time
 - transmit over link; wait turn at next link

http://www.yout ube.com/watch? v=07CuFIM4V54

nice animation; note some of the terms in narration are not accurate (wrt protocol specifications)

Packet-switched networks: routing

- What is routing's goal? find routes from source to destination
 - (Challenge 1) path selection algorithms
 - (Challenge2) Important design issue/type of service offered:
 - datagram network:
 - destination address determines next hop
 - routes may change during session
 - virtual circuit network:
 - fixed path determined at call setup time, remains fixed thru session
 - routers maintain per-call state

Virtual circuits:

"source-to-dest path behaves almost like a physical circuit"

- call setup, teardown for each call before data can flow
 - signaling protocols to setup, maintain, teardown VC
- every router maintains "state" for each passing connection
- resources (bandwidth, buffers) may be allocated to VC

Network Taxonomy

- Datagram network (eg Internet) cannot be characterized either connection-oriented or connectionless.
- Internet provides both connection-oriented (TCP) and connectionless services (UDP), at the network edge, to apps.

Roadmap

- - what's the Internet
 - protocol layers
 - Communication through layers
 - edge & core of any big network:
 - types of service, ways of information transfer, routing
 - Internet layers & Logical vs physical communication
 - Performance:
 - delays, loss
 - Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
 - Security prelude

Layering – Some "histrory": The OSI Reference Model

- ISO (International Standards Organization) defined the OSI (Open Systems Inerconnect) model to help vendors create interoperable network implementation
- Reduced the problem into smaller and more manageable problems: 7 layers
 - a layer should be created where a different level of abstraction is needed; each layer should perform a well defined function)
 - The function of each layer should be chosen with an eye toward defining internationally standardized protocols
- ``X dot" series (X.25, X. 400, X.500) OSI model implementation (protocol stack)
- Did not really "fly"...

Internet protocol stack

- application: ftp, smtp, http, etc
- transport:
 - connection-oriented, reliable data delivery from source to destination (TCP);
 - connectionless, "best effort" (unreliable)
 data delivery (UDP)
- network: routing of datagrams from source to destination; best effort service
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, WiFi, ...
- physical: bits "on the physical medium"

application transport

network

link

physical

Internet protocol stack

- □ Architecture simple but not as thoroughly thought as OSI's
 - no clear distinction between interface-design and implementations;
 - hard to re-implement certain layers
- □Successful protocol suite (de-facto standard)
 - was there when needed (OSI implementations were too complicated)
 - freely distributed with UNIX

Layering: logical communication

Each layer:

- distributed
- "entities" implement layer functions at each node
- entities perform actions, exchange messages with peers

Layering: logical communication

E.g.: transport

- take data from app
- add addressing, form "datagram"
- send datagram to peer
- (possibly wait for peer to ack receipt)

Layering: physical communication

25

Protocol layering and data

Each layer takes data from above

- adds header information to create new data unit
- passes new data unit to layer below

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
 - Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
 - Security prelude

Delay in packet-switched networks

- 1. nodal processing:
 - check bit errors
 - determine output link
- 2. queuing
 - time waiting at output link for transmission
 - depends on congestion level of router

3. Transmission delay:

- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

4. Propagation delay:

- d = length of physical link
- s = propagation speed in medium (\sim 2x10⁸ m/sec)
- propagation delay = d/s

Network Core: Circuit Switching

End-end resources reserved/dedicated for "call" (analogue telephony)

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

A nice video for Circuit vs packet switching

http://www.youtube.com/watch?v=Dq1zpi

DN9k4&feature=related

Visualize delays: Circuit, message, packet switching

 store and forward behavior + other delays'
 visualization (fig. from "Computer Networks" by A. Tanenbaum,)

Fig. 2-35. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.

Packet switching versus classical circuit switching

Packet switching allows more users to use the network!

- 1 Mbit link
- each user/connection:
 - 100Kbps when "active"
 - active 10% of time (bursty behaviour)
- circuit-switching how many users/connections?:
 - 10
- packet switching:
 - with 35 users, probability > 10
 active less than 0.0004 (⇒
 almost all of the time, same
 the queuing behaviour is as in
 circuit switching)

Hint: The probability of k out of n users active (p=0.1 in our example)

$$f(k; n, p) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Queueing delay (revisited) ...

- R=link bandwidth (bps)
- L=packet length (bits)
- a=average packet arrival rate

traffic intensity = La/R

- □ La/R ~ 0: average queueing delay small
- □ La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite! Queues may grow unlimited, packets can be lost

Related with delays...

- packet loss
- throughput

Packet loss

- queue (aka buffer) preceding link has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput (more)

• $R_s < R_c$ What is average end-end throughput?

 $\square R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: Internet scenario

10 connections (fairly) share backbone bottleneck link of R bits/sec

- per-connection end-end throughput: min(R_c,R_s,R/10 (if fair))
- in practice: R_c or R_s is often bottleneck

... "Real" Internet delays and routes (1)...

- What do "real" Internet delay & loss look like?
- <u>Traceroute program:</u> provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.

38

... "Real" Internet delays and routes (2)...

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Three delay measurements from
                                      gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 in1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                trans-oceanic
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
                                                                link
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                   - * means no reponse (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Packet switching properties

- PS: Good: Great for bursty data
 - resource sharing
 - no call setup

- PS: Not so good? Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide <u>circuit-like</u> behavior?
 - bandwidth guarantees are needed for some apps
 - Some routing policies can help???
 - Cf virtual circuit

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
- Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
- Security prelude

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Considerations:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Dial-up Modem

- Uses existing telephony infrastructure
 - Home is connected to central office
- up to 56Kbps direct access to router (often less)
- Can't surf and phone at same time: not "always on"

Digital Subscriber Line (DSL)

- Also uses existing telephone infrastructure
 - dedicated physical line to telephone central office
- Asymmetric: commonly up to 2.5 Mbps upstream; up to 24 Mbps downstream

Access net: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office
 - Related: fiber to the home

Institutional access: local area networks

- local area network (LAN)
 connects end system to edge
 router
- E.g. Ethernet:
 - 10 Mbs, 100Mbps, Gigabit
 Ethernet
- deployment: institutions, home LANs

(a lot more on this later in the course)

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point", or "adhoc"
- wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- wider-area wireless access
 - provided by telco operator
 - ~1Mbps over cellular system
 - WiMAX (10's Mbps) over wide area

(a lot more on this later in the course)

Home networks

Typical home network components:

- DSL or cable modem or Fiber to the home
- router/firewall/NAT
- Ethernet

Physical Media

- physical link: transmitted data bit propagates across link
 - guided media:
 - signals propagate in solid media: copper, fiber
 - unguided media:
 - signals propagate freely e.g., radio

Physical media: wireless

- signal carried in electromagnetic spectrum
- Omnidirectional: signal spreads, can be received by many antennas
- Directional: antennas communicate with focused el-magnetic beams and must be aligned (requires higher frequency ranges)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Wireless: properties Attenuation, Multipath propagation

Physical Media: coax, fiber, twisted pair

Coaxial cable:

- wire (signal carrier) within a wire (shield)
 - baseband: single channel on cable (common use in 10Mbs Ethernet)
 - broadband: multiple channels multiplexed on cable(commonly used for cable TV)

Fiber optic cable:

- glass fiber carrying light pulses
- low attenuation
- high-speed operation:
 - 100Mbps Ethernet
 - high-speed point-to-point transmission (e.g., 5 Gps)
- low error rate

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5 TP: more twists, higher insulation: high-speed Ethernet

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
- Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
- Security prelude

- roughly hierarchical
- national/international backbone providers (NBPs)- tier 1 providers
 - e.g. BBN/GTE, Sprint, AT&T, IBM,
 UUNet/Verizon, TeliaSonera
 - interconnect (peer) with each other
 privately, or at public Network Access
 Point (NAPs: routers or NWs of routers)
- regional ISPs, tier 2 providers
 - connect into NBPs; e.g. Tele2
- local ISP, company
 - connect into regional ISPs

- "Tier-2" ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

- "Tier-3" ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

a packet passes through many networks

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
- Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
- Security prelude

Network Security

- The field of network security is about:
 - how adversaries can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network"
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.
- Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

Example types of malware

Trojan horse

- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)

Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

■ Worm:

- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

- Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- select target
- break into hosts around the network (see botnet)
- send packets toward target from compromised hosts

1-62

The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords) passing by

 Wireshark software used for end-of-chapter labs is a (free) packet-sniffer

The bad guys can use false source addresses

• IP spoofing: send packet with false source address

The bad guys can record and playback

- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

Roadmap

- what's the Internet
- protocol layers
 - Communication through layers
- edge & core of any big network:
 - types of service, ways of information transfer, routing
- Internet layers & Logical vs physical communication
- Performance:
 - delays, loss
- Network/Internet structure complemented:
 - access net, physical media
 - backbones, NAPs, ISPs
- Security prelude

Chapter 1: Summary

Covered a "ton" of material!

- what's the Internet
- what's a protocol?
- protocol layers, service models
- network edge (types of service)
- network core (ways of transfer, routing)
- performance, delays, loss
- access net, physical media
- backbones, NAPs, ISPs
- Security concerns
- (history: read more corresponding section, interesting & fun ☺)

You now hopefully have:

- context, overview, "feel" of networking
- A point of reference for context in the focused discussions to come

Reading instructions

1. Kurose Ross book

Careful Quick

4/e,5/e,6/e: 1.3, 1.4, 1.5 4/e,5/e,6/e: the rest

Extra Reading (optional)
Computer and Network Organization: An Introduction,
by Maarten van Steen and Henk Sips, Prentice Hall
(very good introductory book for non-CSE students

Review questions

Review questions from Kurose-Ross book, chapter 1 (for basic study)

R11, R12, R13, R16, 17, R18, R19, R20, R21, R22, R23, R24, R25, R28.

Extra questions, for further study: delay analysis in packet switched networks:

http://www.comm.utoronto.ca/~jorg/teaching/ece466/material/466-SimpleAnalysis.pdf