Chapter 8 Network Security

Roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrity

Security protocols and measures:

- □ Securing TCP connections: SSL
- □ Network layer security: IPsec
- □ Firewalls

What is security? CIA!

- Confidentiality: only sender, intended receiver should "understand" message contents
 - sender encrypts message
 - o receiver decrypts message

Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Availability: services must be accessible and available to users

The book also includes Authentication: it is normally seen as a mechanism to implement the services above

Packet sniffing:

- broadcast media
- promiscuous NIC reads all packets passing by
- o can read all unencrypted data (e.g. passwords)
- e.g.: C sniffs B's packets

Countermeasures?

Packet sniffing: countermeasures

- One host per segment of broadcast media
 Use switches (not hubs)
- Segment network
 - Use routers
- Encryption

IP Spoofing:

- can generate "raw" IP packets directly from application, putting any value into IP source address field
- receiver can't tell if source is spoofed,
 e.g.: C pretends to be B

IP Spoofing: ingress filtering

- routers should not forward incoming and outgoing packets with invalid addresses
 - Outgoing datagram source address not in router's network (egress filtering)
 - Incoming datagram has internal address as source address (ingress filtering)

Communication threats - Summary

Roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrity

Security protocols and measures:

- □ Securing TCP connections: SSL
- □ Network layer security: IPsec
- □ Firewalls

The language of cryptography

Symmetric key crypto: sender & receiver keys identical

Asymmetric key crypto (or Public-key crypto):
One key for encryption, another for decryption.
One of the keys can be public, the other private.

Symmetric key cryptography

symmetric key crypto: Bob and Alice share the same (symmetric) key: K_{A-B}

Q: how do Bob and Alice agree on key value?

Block Encryption (ECB mode)

CBC - Cipher block chaining mode

Identical blocks now encrypted differently.

May not always be practical, for example for hard disk encryption.

Note that there is no protection against replays and alteration!

ECB vs. CBC

Symmetric Key Ciphers

- DES (Data Encryption Standard)
 - Designed by IBM 1975, Adopted by NIST* 1977
 - Criticized for key length (64→ 56) and mysterious "S-boxes"
 - Turned out to have protection against differential cryptanalysis (found 1990)
 - Probably more effort is spent on cracking DES than on all other ciphers together
 - Today key length is a major problem: 56-bit keys can be cracked

EFF DES cracker. Jan 19, 1999: 22h15m

- 3-DES (repeating DES three times with different keys)
 - 3-DES probably secure today but too computational intensive
- AES (Advanced Encryption Standard)
 - Replaces DES as of 2001
 - Result of an official competition
 - Key lengths: 128, 192 or 256 bits
 - Brute force decryption: if DES takes 1 second, AES-128 takes 149 trillion years, AES-256 would take 10⁵² years
- RC4, RC5, RC6
 - RC4 is considered weak but it is fast

*NIST = National Institute of Standards and Technology, US, formerly NBS

」…

Key Length and Number of Possible Keys

Key Length in Bits	Number of Possible Keys
1	2
2	4
40	1,099,511,627,776
56	72,057,594,037,927,900
112	5,192,296,858,534,830,000,000,000,000,000,000
168	3.74144E+50
937 256	1.15792E+77
512	1.3408E+154

Asymmetric key encryption

- One key is used to encrypt, the other to decrypt
- One key can be public the other kept secret
- Based on mathematically hard problems
 - Factorization of very large primes (RSA)
- Slow because of the large numbers involved
 - 1024 bits and up (RSA), 384 bits (ECC)
 - \circ 2¹⁰²⁴ = 10³⁰⁸ which means >300 digit numbers
- Ciphers:
 - RSA Rivest, Shamir, Adleman (Patent expired 2000)
 - ECC Elliptic Curve Cryptosystem
- 768-bit RSA was reported cracked Jan 2010:
 - They generated a five-terabyte decryption table. It would have taken around 1,500 years using a single AMD Opteron-based PC (they used a cluster)
- 1024-bit RSA is too short to protect against extremely large organizations
 - Use 2048-bit RSA keys in sensitive applications

"the overall effort [as] sufficiently low that even for short-term protection of data of little value, 768bit RSA moduli can no longer be recommended."

Asymmetric key encryption

 One key is normally made public ("Public key encryption")

- You decide whether it is the encryption or decryption key that is public:
- 1. Encryption key public: everyone can send encrypted messages to owner of the private key
- 2. Decryption key public: only one can encrypt, everyone can verify that the secret key has been used.

 Useful?
 - Can be used to sign documents and data.

Example 1: Public Key Encryption

Example 2: Digital Signatures

Simple digital signature for message m:

 \square Bob signs m by encrypting with his private key K_{B} , creating "signed" message, K_{B} (m)

Relative performance

Roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrity

Security protocols and measures:

- □ Securing TCP connections: SSL
- □ Network layer security: IPsec
- □ Firewalls

Message Integrity

Bob receives msg from Alice, wants to ensure:

- □ message originally came from Alice
- message not changed since sent by Alice

Just encryption is not enough!

- Contents can be changed even if it is encrypted
- Solution: add some kind of checksum (hash) to the message before it is encrypted:

(Cryptographic) hash functions

- Input: arbitrary length bit-stringOutput: fixed length bit-string
 - Not a one-to-one mapping, output space typically 128 bits

- Computationally efficient: Typically >10 times faster than symmetric ciphers
- Must be repeatable (same input → same output)
- Impossible to reverse the computation (preimage resistant)
- Infeasible to find an input X with a given hash
- Infeasible to find two inputs resulting in the same hash (pseudorandomness)
- Today's hash functions are not based on mathematical foundations - may lead to problems

"SSL broken! Hackers create rogue CA certificate using MD5 collisions" [www.zdnet.com]

Hash functions

Even a single bit change should give a completely different result -> avalanche effect

SHA-512 has 80 rounds

Hash functions

- Even just one changed bit gives a completely different result:
 - o md5("hello") = 5d41402abc4b2a76b9719d911017c592
 - o md5("Hello") = 8b1a9953c4611296a827abf8c47804d7
- MD5 Message Digest 5 (RFC 1321, 1992)
 - 128-bit message digest \rightarrow 10³⁸ different hashes
 - Avoid in new implementations weak
- □ **SHA-1** Secure Hash Algorithm
 - Designed by NSA, became NIST standard 1995: FIPS-180-2
 - 160-bit message digest \rightarrow 10⁴⁸ different hashes
 - Avoid if collisions may cause problems in application, otherwise ok
- SHA-2 (family name for SHA-224, SHA-256, SHA-384 and SHA-512)
 - Similar design as SHA-1, but at least today SHA-1 attacks not applicable
- □ SHA-3 next generation hash functions
 - Keccak winner of open competition (NIST draft 2014)
 - Arbitrary digest size (standard proposes 224, 256, 384 and 512 bit digests)

"As of 2012, an estimated cost of \$2.77M to break a single hash value by renting CPU power from cloud servers."

- SHA-1, Wikipedia

Keyed Hash - No need to encrypt message

- Authenticates sender
- Verifies message integrity
- No encryption!
- Example: HMAC (Key-Hashing for Message Authentiction)

End point (User) Authentication

Alice says "I am Alice" and sends her secret password to "prove" it.
(Just like the FTP protocol)

End point (User) Authentication

Alice says "I am Alice" and sends her secret password to "prove" it.

playback attack: Trudy records Alice's packet and later plays it back to Bob

Authentication: another try

<u>Another attempt:</u> Alice says "I am Alice" and sends her <u>encrypted</u> secret password to "prove" it.

Authentication: Challenge response

Goal: avoid playback attack

Nonce: number (R) used only once-in-a-lifetime

To prove Alice is "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Summary

- Encryption for confidentiality
- Hashes for data integrity
- Sequence numbers for replay protection
- Authentication (mutual) for identity protection

- Symmetric encryption for bulk data
- Asymmetric encryption for key negotiation

Roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Message integrity

SSL: Secure Sockets Layer

- widely deployed security protocol
 - supported by almost all browsers, web servers
 - https
 - billions \$/year over SSL
- mechanisms: [Woo 1994], implementation: Netscape
- variation -TLS: transport layer security, RFC 2246
- provides
 - confidentiality
 - integrity
 - authentication

- original goals:
 - Web e-commerce transactions
 - encryption (especially credit-card numbers)
 - Web-server authentication
 - optional client authentication
 - minimum hassle in doing business with new merchant
- available to all TCP applications
 - secure socket interface

SSL and TCP/IP

Application
TCP

normal application

Application
SSL
TCP
IP

application with SSL

- SSL provides application programming interface (API) to applications
- C and Java SSL libraries/classes readily available

Real SSL connection

everything

henceforth

is encrypted

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify

TCP FIN follows

SSL record protocol

record header: content type; version; length

MAC: includes sequence number, MAC key M_x

fragment: each SSL fragment 2¹⁴ bytes (~16 Kbytes)

What is network-layer confidentiality?

between two network entities:

- sending entity encrypts datagram payload, payload could be:
 - TCP or UDP segment, ICMP message, OSPF message
- all data sent from one entity to other would be hidden:
 - web pages, e-mail, P2P file transfers, TCP SYN packets

The two modes of IPSec

- edge routers IPsec-aware
- protects communication gw-to-gw (over Internet)
- Virtual Private Network (VPN)

Transport mode

- hosts IPsec-aware
- protects communication all the way from end-toend

IPsec services

- data integrity
- confidentiality

- origin authentication
- replay attack prevention

two protocols providing different service models:

- Authentication Header (AH) protocol
 - provides source authentication & data integrity but *not* confidentiality
- Encapsulation Security Protocol (ESP)
 - provides source authentication, data integrity, and confidentiality
 - more widely used than AH

Virtual Private Networks (VPNs)

motivation:

- institutions often want private networks for security.
 - costly: separate routers, links, DNS infrastructure.
- VPN: institution's inter-office traffic is sent over public Internet instead
 - encrypted before entering public Internet
 - logically separate from other traffic

Virtual Private Networks (VPNs)

What happens?

Firewalls

firewall

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others

Firewalls: why

prevent denial of service attacks:

SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections

prevent illegal modification/access of internal data

- e.g., attacker replaces CIA's homepage with something else allow only authorized access to inside network
 - set of authenticated users/hosts

three types of firewalls:

- stateless packet filters
- stateful packet filters
- application gateways

Säkerhetskurser på Chalmers

- Datasäkerhet EDA 263
- Nätverkssäkerhet EDA 491
- Kryptografi TDA 351
- Språkbaserad säkerhet TDA 602
- Feltoleranta datorsystem EDA 122

