2-3 trees,
AA trees,

B-trees

Announcement

Consultation times — 10-12, room ES61!

« Monday 9t May

e Thursday 12t May
e Thursday 19t May
 Monday 23 May

No plan - just come and ask questions

P.S. don't forget there are exercises on the
website!

2-3 trees

In a binary tree, each node has two children

In a 2-3 tree, each node has either 2 children (a
2-node) or 3 (a 3-node)

A 2-node is a normal BST node:

e One data value x, which is greater than all values in the
left subtree and less than all values in the right subtree

A 3-node is different:

o Two data values x and y
o All the values in the left subtree are less than x
o All the values in the middle subtree are between x and y

o All the values in the right subtree are greater than y

2-3 trees

A A

2-node

An example of a 2-3 tree:
(D
£
(L (5) O

Why 2-3 trees?

With a 2-3 tree we can maintain the
invariant:

o The tree is always perfectly balanced!

Invariant: all children of each node
always have the same height

e In particular, any non-leaf 2-node has 2 children

o Any non-leaf 3-node has 3 children

This wasn't possible with binary search
trees

Which of these are 2-3 trees?

7

11

15

13

17

19

7
11 15
VA\V
4 5 9 13 1719
7
11 15
S 9 13 17 19

11

15

17

19

Which of these are 2-3 trees?

7

11

15

13

17

19

7
11 15 2
VQ\V %
4 5 9 131719 1
| Only this one |
7 (why?)
11 15 2
5 9 13 1719 1

11

15

17

19

Insertion into a 2-3 tree

To insert a value (e.g. 4) into a 2-3 tree,
we start by doing a normal insertion...

7

2 11 15

v/\v vy

9 13 17 19

5
ij We broke the balance invariant!

Insertion into a 2-3 tree

To fix the balance invariant, we absorb
the bad node into its parent!

7

1 4 5 9 13 17 19

4 got absorbed into 5

Insertion into a 2-3 tree

Now suppose we want to insert 3.
We'll absorb it into its parent as before...
7

Insertion into a 2-3 tree

We get a 4-node, which is not allowed!
We fix this by a method called splitting.
7

Splitting a 4-node

To get rid of a 4-node, we split it into

several 2-nodes!

This creates an extra level in the tree.
We will fix this by absorbing

the red node into its parent.

X

y

Z

—

D

X

A

Insertion into a 2-3 tree

After splitting, we absorb the “extra
level” node into its parent.

r r 7
’ Absorb 4
into . N | 2 11 15
1 9 13 17 19

Insertion into a 2-3 tree

We restored the invariant!

Let's try inserting 18.

"/
2 4 11 15
v vy vy
1 3 5 9 13 17 19

Insertion into a 2-3 tree

First add and absorb.
We got a 4-node, split it.
7
2 4 11 15

T S S

Insertion into a 2-3 tree

Absorb the extra node into the parent.

2 4 11 15

v vy vy
1135 911

17 19

Insertion into a 2-3 tree

We got a 4-node again, so spht and

absorb.

15 will be
absorbed

11 15 18
v vy —
3) 9 13 17 19

Insertion into a 2-3 tree

Done! (If we insert even more, eventually
the root will split, which adds a new level
to the tree.)

7 15

R

2 4 18

11
v vy —
1 3) 9 13 17 19

2-3 insertion algorithm

Insert the new node into the tree

Then alternate 2 steps:

» absorb the node into its parent, move up to the
parent

o if the node is a 4-node, split it into 2-nodes

Stop once you don't need to split

2-3 trees, summary

2-3 trees do not use rotation, unlike balanced
BSTs — instead, they keep the tree perfectly
balanced

 Invariant maintained using absorption (to remove
unwanted nodes) and splitting (to eliminate 4-nodes)

Complexity is O(log n), as tree is perfectly
balanced

Conceptually much simpler than AVL trees!

But implementation is really annoying :(
e See TwoThree.hs

AA trees

AA trees implement a 2-3 tree using a BST!

A 2-node becomes a BST node

A 3-node becomes two BST nodes:

X Yy

e

We'll always translate a 3-node
into a node and its right child

-

AA trees, the plan

An AA tree is really a 2-3 tree, but we store
it in a binary search tree

A bit like what we did for binary heaps

We'll need to add extra information to the
nodes, and invariants, so that:

e Any AA tree must correspond to a 2-3 tree

e We can tell whether each node in the tree is a
2-node, or part of a 3-node

Then we can adapt 2-3 insertion to AA trees!

e For searching, we can just use BST search

AA trees

We store with each node a level, which is the
height of the corresponding 2-3 tree node
X

Ii &

Notice that x and y have the k

same level. That's how we can n
tell they represent a 3-node.

Our invariant will talk about levels.

AA trees

If a node has the same level as its parent,
we'll draw them next to each other

k+1 *k+1

X

Tt SUN

This emphasises the levels in the tree.

4

2-3 trees as AA trees

Here was the 2-3 tree from before...

7 15

S

18

—

11
1 3 S 9 13

17

19

2-3 trees as AA trees

...and here is the corresponding AA tree!

We can identify the 2- and 3-nodes by

looking at the le%el of the nodes (how?)

\7%15

/ N

2 -4

AA trees

We can translate a 2-3 tree to an AA tree

And, by looking at the levels, we can go
the other way

 If anode has the same level as its right child, the
two nodes together make a 3-node

e Otherwiseit's a 2-node

Now we need an invariant to check that:

e We only have 2-nodes and 3-nodes
o The levels match the heights in the 2-3 tree
o The 2-3 tree is perfectly balanced

AA tree invariant, a first attempt

An AA tree only contains subtrees of the
following shape:

,Vk+1 ,*k+1 k+1

/\k //\k

Notice that the level of x/y must be exactly
one more than the level of A/B/C

(we consider null to have a level of O - this
means a leaf must have a level of 1)

AA tree invariant, part 1

[t turns out to be better to break this
invariant into pieces, so that it says
something about each BST node

First, the level of a child node in the BST
must be either:

o equal to the level of its parent, or

» one less than the level of its parent

(where the level of null is 0)

AA tree invariant, part 2

If a node has the same level |
as its child, it must bethe x .y

root of a 3-node. / / \

S0 we can say:

e A node's level must be greater than its left child:
level(node) > level(node.left)

e And also greater than its right-right granchild:
level(node) > level(node.right.right)

AA tree — not allowed

Bad: malformed 3- Bad: 4-node (right
node (left child at grandchild at same
same height) height)

v v

/\ \ // /\

We'll get these trees during insertion!

AA tree invariant, summary

We consider the level of null to be 0

For each node in the tree, the following must

hold:

e The node's children must have a level either equal to or
one less than the node itself

e level(node) > level(node.left)
(x ¢ y not allowed)

o level(node) > level(node.right.right)
(x = y = z not allowed)

This implies that any leaf node has a level of 1

We also have the normal BST invariant!

Why is this not an AA tree?

11's right child
| (null) has level 0,
'3 3 should be 1 or 2

\‘Z\A |

11

11 18
S L\
17

9 719

Why is this not an AA tree?

| 7 is left child of 15,
3 v 3 has same level

7 < 15

1

5 9 13 17 19

Why is this not an AA tree?

s Children of 7 and 15
v 4 have too small level

1

(11) 18
(9) 9 13 17 19

Why is this not an AA tree?

~ Leaf nodes have

left child null
(height 0),
y SO thelr height
i / 15 ~ shouldbel

I \ i \ / \

AA tree insertion

To insert into an AA tree, we start with a
normal BST insertion. The new node is a leaf so

we give it a level of 1. Note that its parent also
has level 1 (why?)

If we are lucky the parent was a 2-node and we
insert into the right of it, giving a 3-node:

;-

Otherwise, the invariant is broken.
But there are only two ways it can break!

v |

Case 1: skew

Here, we have inserted into the left of a 2-
node, breaking the invariant.

We can fix it by doing a right rotation!

1" kel ' kel kel

-

A B A

This operation is called skew.
We do it whenever the new node is the left
child of its parent.

Case 2: split

Here, insertion created a 4-node.
We can split it into 2-nodes!

Notice that y's level increases — may
break the invariant one level up.

So continue up recursively!

' k+1 - k+1 k+1

X%Y

Vs / VPN

All other cases: skew and split

Insertion can also create a 4-node like this:

Y;‘
VHZ*

[

But, if we do a skew, thls turns into the
previous kind of 4-node!

To cover all the cases we just have to:

first skew if the left child is bad,
then split if the right grandchild is bad

Example: the quick brown fox...

Insert “quick” into “the”
1 1
quick<—— the

Left child at
same level!
Skew to fix it
(rotate right)

1 1
quick — > the

Example: the quick brown fox...

Insert “brown” |
qulck

-1 -1 1
brown< quick — » the \
| | | brown
skew
After skewing,

1 1 we get a 4-node!
brown —»quick > the Split it

Example: the quick brown fox...

Insert “fox”

qulck

bI'OW].’l—N fox\‘

Insert “jumps”

2
quick

/\.

broww fox ﬂumps

l split “brown”

2 2
fox «qulck

L

brown]umps he

Split moves
“fOX” up

Example: the quick brown fox...

Insert “jumps” fox Eqmck

1/\\

brown]umps

l skew

fox %qulck

3 /\

brown]umps

AA trees — looking back

There are only two ways that insertion can
break the invariant

« Making a left child with the same height as its
parent — skew it

« Making a 4-node - split it
Why skew then split? Because skewing

ensures there's only one possible way to
represent a 4-node

When we split, the level of the top node
increases — this corresponds to absorption
in a 2-3 tree

AA trees — implementation

The level is stored as part of each node.

Looking at the diagrams, the level changes
when you do a split — so make sure to do this

Easiest way to implement it:

have separate functions for skew and split,
call them from insert. But first skew then
split, to take care

of this case: _

y ooz

/\

AA versus AVL trees

AA trees have a weaker invariant than
AVL trees (less balanced) — but still O(log

n) running time

Advantage: less work to maintain the
invariant (top-down insertion — no need
to go up tree afterwards), so insertion
and deletion are cheaper

Disadvantage: lookup will be slower if the
tree is less balanced

» But no difference in practice

B-trees

B-trees generalise 2-3 trees:

e In a B-tree of order k, a node can have k children
e Each non-root node must be at least half-full
e A 2-3 treeis a B-tree of order 3

Insertion also based on splitting!
10 22 30 40

13 | 15 _18 20 32|35 _38 |

Why B-trees

B-trees are used for disk storage in databases:
e Hard drives read data in blocks of typically ~4KB

e For good performance, you want to minimise the number

of blocks read

e This means you want: 1 tree node = 1 block
e B-trees with k about 1024 achieve this

10 2230 40

13 | 15 _18 20 32|35 _38 |

Red-black trees (not on exam)

Instead of 2-3 trees, we can use 2-3-4 trees

e 2-node, 3-nodes and 4-nodes
(or B-tree with k = 4)

There's a more efficient insertion algorithm
for them, called top-down insertion!

« See Wikipedia page for more information

We can implement them using BSTs, using

the same ideas as AA tree
red-black tree, the fastest |

s. This is called a
halanced BST

o Gets complicated because of .

ots of cases

Summary

2-3 trees: allow 2 or 3 children per node
 Possible to keep perfectly balanced

o Slightly annoying to implement

AA trees — 2-3 trees implemented using a BST

o Similar performance to AVL trees, but much simpler

o Fewer cases to consider, because the invariant can
only break in two ways

B-trees: generalise 2-3 trees to k children

o If k is big, the height is very small — useful for on-disk
trees e.g. databases

