
Models of Computation Models of Computation

Bengt Nordström, October 26, 2008

Department of Computing Science,

Chalmers and University of Göteborg,

Göteborg, Sweden

1 Are all functions computable?

It is easy to confuse functions in mathematics and programs in computing science.

They seem to be very similar objects. If we have a (mathematical) function f from

N to N then we can write f(i) which expresses the result of applying f to the natu-

ral number i. In programming we also have something we call “functions” which

produces a result when we apply it to an input of the right type. An immediate

observation is that many “functions” in programming languages are not determin-

istic in the sense that equal input yields equal output. There are many kind of

strange side-effects which can cause this behavior. But even if we only consider

so called pure functions there is a clear distinction.

It is clear that we cannot assume that these concepts are identical just because

we use the same name for them. When we in mathematics say that we have a

function f ∈ N → N then we mean that f is a subset of N × N such that if

(a, b) ∈ f and (a, c) ∈ f then b = c. 1 A program on the other hand is something

which when given an input can be executed on a computer to yield a result. There

is no reason to believe that this concept should coincide with the function concept

in mathematics.

1.1 Functions are different from programs: the diagonaliza-
tion argument

There is a simple argument showing that the notions of program and function do

not coincide. We just count how many programs taking a natural number to a

natural number there are and compare it with how many elements there are in the

set N → N. We know that these sets are infinite, so we must use the standard
1We can also use the definition that f is a binary relation such that if a f b and a f c then b = c.

1



Models of Computation Models of Computation

mathematical method to compare the cardinality of two sets: The set A has at

least as high cardinality as the set B if there is a surjective 2 function from A to

B. We will usually compare the cardinality of a set with the cardinality of N. We

will say that a set is countable if it does not have more elements than the set N:

Definition 1 (countable) The set A is countable if there is a surjective function

f ∈ N → A.

The following two facts says that there are more functions then programs:

Fact 1 The set of programs is countable.

This is an immediate fact for anyone who has written a program. Programs are

stored in the computer as a text string, each character having its ascii code. We can

look at this string as a binary number. So each program can be seen as a number,

hence the set of all programs can be seen as a subset of all natural numbers. Hence

it must be countable.

The other way of being convinced of this is to use the mathematical fact that

the set of all strings is countable if the alphabet is finite.

Fact 2 The set N → N is not countable

If it were, we could find an enumeration f1, f2, . . . of all its elements. But then the

function defined by

diag(i) = fi(i) + 1

cannot be in the set, since if it were, we must have that diag = fj, for some number

j. But this is impossible, since diag(j) 6= fj(j).

So, a simple diagonalization argument shows that there are more functions in

N → N then programs taking a natural number to a natural number. We will call

a function in N → N L-computable if there is a program in the programming

language L computing it:

2That a function f ∈ A → B is surjective means that each element in B is the image of some

element in A.

2



Models of Computation Models of Computation

Definition 2 (L-computable) A function f ∈ N → N is L-computable if there is

a program P in L taking a natural number to a natural number such that when P

is applied to n the result is f(n)

This definition needs refinement 3 but this will be postponed to later when we will

be more precise. We have here choosen to work with the set N, but we will also

use Bool, the set of boolean values.

1.2 A nontrivial constant function

It is an open mathematical problem whether Goldbach’s conjecture is true.

Conjecture 1 (Goldbach) Every even number greater than 2 can be written as a

sum of two prime numbers

We can then ask ourselves if the constant function g ∈ N → N defined by

g n =

1 if Goldbach’s conjecture is true,

0 otherwise
(1)

is computable? It seems that it is not possible to write a program behaving like

g without knowing that the conjecture holds. If we reason like a classical math-

ematician we conclude that g is indeed computable. If Goldbach’s conjecture is

true we choose a program which always outputs 1 and if it is false we choose a

program which always outputs 0. So the function is computable but it is not pos-

sible to write a program for it. For a constructive mathematician this reasoning

does not hold and g is not computable (until we prove the conjecture).

3A program in the language L does not take natural numbers as input and output, instead there

is some way of representing them.

3



Models of Computation Models of Computation

1.3 A program which cannot be written

Suppose that a person comes up to you and says that he has written a program

halts taking a boolean value to a boolean value such that

halts x =

true if the computation of x terminates,

false otherwise

Do you believe him? You just write down this program:

T x = if halts x then loop else true

The program loop is a program which never terminates. We now see that the pro-

gram T reverses the termination behaviour of its argument, i.e. that the program

T a terminates if and only if a does not terminate. And this holds for all boolean

values a! In particular for the boolean value s defined recursively by

s = T s

Does s terminate? From the definition of s it terminates if T s terminates. But

this terminates if the argument s does not terminate. So s terminates if s does not

terminate.

So s does not terminate? But if this is so, then T s does not terminate (from

the definition of s). And T s does not terminate if s terminates. So s does not

terminate if s terminates.

We have a contradiction and we can conclude that the program halts does not

exist.

1.4 It is impossible to have a model for computation which cap-
tures all terminating programs

We have noticed that there are more functions in the set N → N then programs

from natural numbers to natural numbers. A natural idea is then to try to restrict

our interest to the subset of N → N which only contains the computable functions.

But this leads to problems.

4



Models of Computation Models of Computation

Let us identify the set of strings (denoting programs) and the set N as we

did earlier. It seems obvious that all reasonable models of computations should

allow us to to write a program P (for parser) which when given a string as input

can decide whether the string is a syntactically correct program. This is obvious

since we want it to be mechanically decidable whether a program is correctly

formed or not. We should not require any intelligence to see whether a program

is wellformed. But if we have such a program, then we can write a program G

(for generate) which for an input i outputs the ith program pi. We generate first

all natural numbers 0, 1, . . . and (looking at a number as the ascii code of a string)

remove (using P) all syntactically erroneous strings. We can then output the last

program after having constructed i + 1 programs.

So we will have a way to mechanically enumerate all programs in the model,

we first execute the program G with input 1 obtaining a string representing the

program p1, then with input 2 obtaining a string representing the program p2, and

so on. We will use the notation fi for the function which the program pi computes.

But now we can use the diagonalization argument to construct a computable func-

tion in N → N which is not in the enumeration. The following function

d(i) = fi(i) + 1

is definitely computable. To compute the function for the value i we just generate

the ith program (using G), give i as input to that program and add 1. All these

operations should be computable. Hence, d is a computable function and it is not

in the enumeration {fi} of all computable functions.

We can escape this contradiction if we take a subset of all partial functions

from N to N. Then in the reasoning above each function fi can be partial and the

definition of the function d does not necessarily give a function which is different

from all functions in the enumeration (if the ith function is undefined for the

argument i, then d becomes undefined for that argument).

The computational intuition behind an undefined function value is that the

corresponding program does not terminate for that value.

5



Models of Computation Models of Computation

1.5 The halting problem

We can try to recreate the contradiction above in the following way. Consider the

function dd defined by

dd(i) =

undefined if fi(i) is defined,

0 otherwise

It is clear that the function dd is not in the enumeration {fi}, but is it computable?

It would be if we could solve the halting problem, namely construct a program H

which when given two 4 inputs (i, j) outputs 1 if the program pi terminates for the

input j and otherwise outputs 0.

If we use the notation 〈P, i〉 for the result of giving the input i to the program

P, then we could define the program DD which computes dd by

〈DD, i〉 = if 〈H, (i, i)〉 then loop else 1

We are a bit informal here, but it seems clear that to test whether a number is equal

to 0 should be computable. We use the notation loop for a program which never

terminates.

In summary, if the halting problem is computable, then we are able to recreate

the contradiction. The only conclusion is that that the halting problem is not com-

putable. Notice the similarity between this argument and the previous example of

a function which cannot be written.

1.6 Is it always possible to write a self-interpreter for a pro-
gramming language?

A self-interpreter for a language L is a program e which when given a program

(string) p and its input n computes the result of executing p on n, i.e.

〈e, (p, n)〉 = 〈p, n〉

4We can represent two inputs by concatenation with a new symbol in between the inputs.

6



Models of Computation Models of Computation

We will here show that it is impossible to write a self-interpreter for a language in

which all programs terminate.

Suppose that it is possible to write the self-interpreter e. Then we can define

the program d in the following way:

For a given input n apply first the program G on it. The result is pn, the n’th

program in the enumeration of all programs. This program is then interpreted

by the self-interpreter e together with the input n, obtaining the same result as

applying pn to the input n. Then we add 1 to the result.

It is clear that the program d is not in the enumeration {pk}, since if it were

equal to the program pn it would yield the same result for all inputs, in particular

for the input n. But d is constructed in such a way that

〈d, n〉 = 〈pn, n〉+ 1 6= 〈pn, n〉

We have a contradiction and must conclude that it is impossible to write a self-

interpreter for a language in which all programs terminates.

7


