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Abstract

Graphics Processing Units (GPUs) offer potential for very high performance; they are also

rapidly evolving. Obsidian is an embedded language (in Haskell) for implementing high

performance kernels to be run on GPUs. We would like to have our cake and eat it too;

we want to raise the level of abstraction beyond CUDA code and still give the programmer

control over the details relevant to kernel performance. To that end, Obsidian provides

array representations that guarantee elimination of intermediate arrays while also using the

type system to model the hierarchy of the GPU. Operations are compiled very differently

depending on what level of the GPU they target, and as a result, the user is gently constrained

to write code that matches the capabilities of the GPU. Thus, we implement not Nested Data

Parallelism, but a more limited form that we call Hierarchical Data Parallelism. We walk

through case-studies that demonstrate how to use Obsidian for rapid design exploration or

auto-tuning, resulting in performance that compares well to the hand-tuned kernels used in

Accelerate and NVIDIA Thrust.

1 Introduction

Graphics Processing Units (GPUs) offer the potential for high-performance im-

plementations of data parallel computations. Yet, achieving top performance is

recognised as a difficult task, requiring expert programmers with the ability and

time to manually optimise use of on-chip storage, make granularity decisions,

and match memory access patterns to the non-traditional constraints placed by

GPU memory architectures. Accordingly, programs are written in low-level vendor-

supplied programming environments, such as NVIDIA CUDA, where all these

details are under programmer control.

One answer to the high cost of GPU programming is to attempt to automate

the process, in particular by starting with a very high-level language and using an

optimising compiler to make the aforementioned decisions, synthesising code in a

language like CUDA. Indeed, many recent research projects have done just this,

including: Copperhead (Catanzaro et al., 2011), Accelerate (Chakravarty et al., 2011;
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McDonell et al., 2013), Harlan (Holk et al., 2012), and Delite (Chafi et al., 2011).

These languages are first and foremost array languages. Typical operations include

mapping, filtering, scanning, and reducing array data. By restricting program struc-

ture, this language family gains at least one major benefit over more general purpose

array languages: they can very effectively fuse composed array operations, eliminat-

ing temporary arrays. Decisions about what to fuse, and how to use local on-chip

storage on the GPU, are completely automated by the DSL compiler and runtime.

Such automation certainly has considerable appeal. Many users would like to gain

the benefits of GPU acceleration without studying the details of GPUs and GPU

programming idioms. These are the users served by Accelerate. For example, when

using Accelerate, prefix sum becomes scanl (+) 0 arr without tuning parameters,

and that is that. However, it is widely accepted that successful acceleration on GPUs

often demands fine control of many details that are closely related to the GPU

architecture, and even experts employ a design exploration process, experimenting

with tradeoffs and making major changes to an initial version. For example, Harris

(2007) shows detailed, step by step, optimisation of reduction kernels in CUDA.

The final reduction kernel is 30x faster than the naive CUDA implementation used

as starting point. Our work on Obsidian tries to answer the question of whether or

not the benefits of functional programming can be brought to the group of users

of GPUs who wish to explore a variety of possible designs in the search for high

performance.

The big question then is what forms of abstraction to provide. The intrepid GPU

programmer needs to be able to control many details, including the arrangement of

computations into threads, warps, blocks and grids, the number of kernels launched,

the use of local memory on the GPU, synchronisation points, memory access

patterns and much more. The danger is that the user simply ends up writing CUDA

in Haskell syntax; we would particularly like to avoid tedious index calculations.

Our main approach to easing the job of the programmer while still providing fine

control is the provision of compositional array operations that also offer hierarchy

polymorphism. Obsidian uses a combination of push and pull arrays in the meta-

language (Section 5). It uses a fusion by default approach, even at the expense of

work duplication, together with an explicit function for making arrays manifest in

memory. In addition, Obsidian exposes the hierarchical nature of GPU hardware

directly in the type system. Core operations work at any level (thread, warp, block,

grid) but how they are compiled will vary greatly between levels. This use of the type

system to model the GPU hierarchy allows us to implement not full Nested Data

Parallelism (as for example in NESL and its successors (Blelloch, 1996)), but rather

a limited form of hierarchy that is perfectly matched to the capabilities of the GPU.

Obsidian also eases the job of the programmer in other ways. GPUs have some

hard-coded limits on aspects of programs such as the maximum number of threads

allowed in a block, or the size of a warp. These constant limits do not apply to

Obsidian programs, but rather there is virtualisation of threads, warps and blocks,

with the generated CUDA code obeying the limits. Also, the ease with which

functional programs can be parameterised gives us a straightforward approach to

the systematic generation and measurement of code variants, with the result that
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design exploration is very much easier than it is in CUDA. Obsidian also helps the

programmer by automating the process of laying out intermediate arrays in memory.

This memory layout system takes care of liveness of arrays and reuse of space in

shared memory, and is done statically.

Obsidian has been under development for quite some time, and we have explored

a variety of APIs. The version presented here has proved to work very well in

developing key kernels for library operations such as reduction and prefix scan.

The resulting kernels perform well—on a par with those in NVIDIA’s Thrust

Library (NVIDIA, 2015c). We hope that readers will feel inclined to experiment

with the design and implementation of such kernels.1

1.1 Contributions

This paper presents Obsidian in its current form. During the development of

Obsidian, the following contributions have been made:

• High-/low-level: Obsidian started out based on earlier work in hardware

design using functional languages. The idea was to implement a GPU pro-

gramming language that was very similar to the hardware description language

Lava (Bjesse et al., 1998) in order to test if a programming model similar to

that of structural hardware design is suitable for GPU kernel implementation.

The similarities to Lava are most apparent in early work on Obsidian

(Svensson et al., 2008; Svensson et al., 2010). However, we have discovered that

GPU programming differs from structural hardware design in that the target

platform greatly constrains the shape of suitable programs. In particular, the

user must control how an algorithm is divided up into non-communicating

tasks, each of which can be tackled by a block of threads that can synchronise.

He must also control the use of different forms of memory with different well-

functioning access patterns. While we retain a Lava-like emphasis on higher

order functions like reduce and scan, we have had to provide them in many

more guises than we originally thought would be necessary. An example of this

is the provision of sequential versions of such common combinators, which can

be important to controlling task size and thus achieving high performance.

Obsidian is unique among the functional DSLs for GPU programming in

giving the user abstractions that permit very fine control both of the division

of an algorithm into parallel and sequential sub-parts and of the deployment

of the resulting tasks onto the GPU.

• Push arrays: Push arrays were first implemented as part of Obsidian (Claessen

et al., 2012). They are a complement to the more standard delayed (or pull)

arrays that are typically used in embedded languages. The combination of pull

and push arrays allows for the generation of better code in embedded DSLs.

Push arrays will be explained in more detail in Section 4.4.

1 Download Obsidian at github. www.github.com/svenssonjoel/Obsidian
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• Monad reification: Obsidian uses a simple monad reification technique (ob-

serving the underlying structure of a monadic computation) (Svenningsson &

Svensson, 2013). At the same time, other Embedded Domain Specific Language

(EDSL) implementors were also working on monad reification, leading to a

number of independent solutions (Persson et al., 2012; Sculthorpe et al., 2013).

• Hierarchy-level polymorphism: The hierarchy polymorphism and type-level

tagging of operations and arrays are a fairly new addition to Obsidian.

The type-level modelling of the GPU hierarchy is touched upon in Svensson

et al. (2014), but explained in more detail here. Note that the type level indices

used by Obsidian are different from those in the Repa library (Keller et al.,

2010). In Repa, an array is labelled differently, at the type level, depending on

whether it is internally represented as a delayed or manifest array.

2 Background: The GPU and CUDA

Obsidian targets NVIDIA GPUs supporting CUDA (NVIDIA, 2015a), a C-dialect

for data-parallel programming. These GPUs are built on a scalable architecture:

each GPU consists of a number of multiprocessors; each multiprocessor has a

number of processing elements (cores) and an on-chip local memory that is shared

between threads running on the cores. A GPU can come with as few as one

such multiprocessor. The GPUs used in our measurements are an NVIDIA Tesla

c2070 and a GTX680. The GTX680 GPU has eight multiprocessors, with a total

of 1,536 processing cores. On these cores, groups of 32 threads called warps are

scheduled. There are a number of warp scheduling units per multiprocessor. Within

a warp, threads execute in lockstep (SIMD); diverging branches, that is those that

take different paths on different threads within a warp, are serialised, leading to

performance penalties.

The scalable architecture design also influences the programming model. CUDA

programs must be able to run on all GPUs from the smallest to the largest. Hence,

a CUDA program must work for any number of multiprocessors. The CUDA

programming model exposes abstractions that fit the underlying architecture; there

are threads (executing on the cores), blocks of threads (groups of threads run by a

multiprocessor) and finally the collection of all blocks, which is called the grid.

The threads within a block can use the shared memory of the multiprocessor to

communicate with each other. A synchronisation primitive, syncthreads(), gives

all the threads within a block a coherent view of the shared memory. There is no

similar synchronisation primitive between threads of different blocks.

The prototypical CUDA kernel starts out by loading data from global memory.

The indices into global memory for an individual thread are expressed in terms of the

unique identifier for that block and thread. Some access patterns allow memory reads

to be coalesced, while others do not, giving very poor performance. The patterns

that lead to good performance vary somewhat between different GPU generations,

but regular, consecutive accesses by consecutive threads within a warp are best.

Accesses to shared local memory also have the property that certain patterns are

more efficient. The shared memory is divided into banks and it is most efficient if
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the threads of a warp access data elements residing in different banks. On current

GPUs there are either 16 or 32 banks.

A CUDA program is expressed at two levels. Kernels are data-parallel programs

that run on the GPU. They are launched by the controlling program, which runs

on the CPU of the host machine. Obsidian is primarily a language for engineering

efficient kernels, but, like other GPU DSLs, it also provides library functions for

transparently generating, compiling and invoking CUDA kernels from the high-

level language in which Obsidian is implemented (Haskell). Unlike most GPU

DSLs, Obsidian can also be used to generate standalone kernels, which can be

called from regular CUDA or C++ programs—a common need when accelerating

existing applications.

3 Introductory Obsidian example: Reductions

Section 7 evaluates the performance of a series of reduction kernels. Here, we begin

with a simple, concrete example of how to write and deploy a reduction kernel, saving

Obsidian implementation details for later. The reduction kernel implemented in this

example reduces sub-arrays of a given input array. This reduction of sub-arrays can

be used in the implementation of reduction of millions of elements as outlined in

Section 7.1. In Obsidian, arrays are either of type Pull s a or Push t s a. The

parameter s is the type of the array’s length, and a its element type. The t parameter

indicates at which level of the GPU hierarchy the array is computed. These array

types are explained in more detail in Sections 4.2 and 4.4.

The reduction code below works for arrays that have a length that is a power of

two. We assume that the operator being reduced (or folded) is both associative and

commutative. The function defined below, reduce, splits the array in the middle

and then uses zipWith to apply the reduction operator to pairs of elements. It then

proceeds to recursively reduce the resulting array.

reduce :: (Compute t, Data a)

⇒ (a → a → a)

→ Pull Word32 a

→ Program t (Push t Word32 a)

reduce f arr

| len arr == 1 = return $ push arr

| otherwise =

do let (a1,a2) = halve arr

arr’ ← compute $ push $ zipWith f a1 a2

reduce f arr’

In Obsidian, one writes functions corresponding to kernels and a separate program

that runs one or more such kernels in parallel over the GPU. The program that

distributes multiple instances of the reduction kernel is the reductions function

below. It splits an input array into chunks, here of 512 elements, and performs the

reduce kernel on each of those chunks. Choosing 512 elements is just an example,

any power of two works as long as the data fits in shared memory.
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reductions :: Data a

⇒ (a → a → a)

→ Pull EWord32 a → Push Grid EWord32 a

reductions f arr = asGridMap body (splitUp 512 arr)

where body a = execBlock (reduce f a)

Launching the reductions program on the GPU is done as follows:

perform :: IO ()

perform =

withCUDA $ do

kern ← capture 64 (reductions (+))

useVector (V.fromList [0..1023 :: Int32]) $ λi →
allocaVector 2 $ λo →
do o <== (1,kern) <> i

r ← peekCUDAVector o

lift $ putStrLn $ show r

The first step is to capture the kernel; the Obsidian code is compiled into CUDA

and the NVIDIA CUDA compiler nvcc is applied to it. The result kern is a handle

to the dynamically linked in function. At capture, the number of threads to use

per CUDA Block is specified, in this case 64. Obsidian will generate different code

depending on the numeric parameter passed to capture. That is, capture 64 and

capture 128 generate code specialised for either 64 or 128 threads. Any number

is acceptable as the parameter to capture as long as it corresponds to a number

of threads per block admissible by the GPU, currently between 1 and 1,024. The

CUDA code that the kern handle refers to has been compiled for the specific array

size and number of threads specified. In this case, kern operates on subarrays of

length 512. The functions useVector and allocaVector are used to allocate space

for the input and output of the kernel. Then the kernel is launched using the <==

operator; the number 1 specifies the number of blocks to use. Even though here

only one (real) block is used, the kernel is run twice in sequence within that block.

This is an example of block virtualisation.

Running the perform function prints the result:

[130816,392960]

The withCUDA function is the run function of a monad called CUDA that, together

with its associated capture and <== functions, gives the programmer a way of

running programs on the GPU directly from within a Haskell program. CUDA code

is generated into files called gen0, gen1 and so on, located in the working directory.

These files are not deleted after being compiled and dynamically loaded into the

running executable, but rather left for inspection by the programmer.

4 Obsidian programming model: Overview and discussion

Obsidian is an EDSL, implemented in Haskell. When an Obsidian program is run,

a data structure is generated encoding an abstract syntax tree (AST). Embedded
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languages that generate ASTs are traditionally called deeply embedded languages. A

shallow embedding, on the other hand, implements the DSL semantics directly at

the point of each call into the EDSL API. A combination of the two approaches is

often used, as one aims to find a sweet spot that combines the advantages of the two

approaches, while avoiding the disadvantages of each (Svenningsson & Axelsson,

2013). This is what Obsidian does, as we shall see later. The AST is used for CUDA

code generation, but our array representations have disappeared by the time we get

to the AST. Elliott (2003) presents an excellent introduction to compiling embedded

languages.

Obsidian has two main parts, an array language with two main immutable array

representations, pull and push arrays, and combinators for laying out computations

onto a GPU.

4.1 Expressions

Obsidian’s target language includes expressions operating on scalar data; these

expressions are captured by the (Exp a) GADT. For the types supported by

Obsidian, there are shorthands:

type EInt = Exp Int

type EWord = Exp Word

type EInt8 = Exp Int8

...

type EInt64 = Exp Int64

type EWord8 = Exp Word8

...

type EWord64 = Exp Word64

type EFloat = Exp Float

type EDouble = Exp Double

type EBool = Exp Bool

Tuples are also supported but have no representation in the Exp data type; rather,

normal Haskell tuples are used.

Amongst the operations available on Exp expressions are arithmetic and bitwise

operations exposed via instances of Num and Bits. There are also conditionals and

boolean operations. Conditionals are expressed using an ifThenElse function:

class Choice a where

ifThenElse :: Exp Bool → a → a → a

Boolean operators look like the traditional Haskell operators on Bool, but with

a * appended to the operator name. This is a convention shared by several Haskell

EDSLs and comes from an unfortunate definition of the standard Haskell Ord and

Eq classes. These classes require that the result type of < and == is a Bool. In

Obsidian, the equality operator resulting in an EBool is ==*, while the standard ==

is still available for use in the meta-language.

There are restrictions on the elements used in an Obsidian program. These

restrictions are expressed using the constraint Data a on values of type a, which
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we saw in the code examples of Section 3. The Data class is the aggregation of the

Choice and Storable classes.

class (Storable a, Choice a) ⇒ Data a

Storable should not be confused with the standard Haskell class for data that

can be written into memory as raw bits; it is an Obsidian class that implements

storing of data elements into shared memory. There are instances of Storable for

base types and tuples up to a certain size.

4.2 Pull arrays

A pull array is implemented as a length and a function from an expression

representing an index to a value. This is a very standard approach to implementing

arrays in EDSLs (with the same representation being used in Feldspar (Axelsson

et al., 2011) and Repa (Keller et al., 2010)), as it gives fusion/deforestation by default.

We first came across it in Elliott’s work on Pan (Elliott, 2003), but similar ideas

appeared much earlier, for example, in the compilation of APL (Guibas & Wyatt,

1978).

The consumer of a pull array must apply the pull array function to each index of

interest.

data Pull s a = Pull s (EWord32 → a)

The s parameter to Pull is the type of the length of the array. This type can

be either Word32 or EWord32. Word32, which we refer to as a static length, is used

in most cases and is required, for example, when the array is stored into memory.

The EWord32 type, or dynamic length, is useful in some cases where the length

does not need to be exactly known. Obsidian programs executed at the block level

or below need a static size for any array computed in parallel. When composing

fixed-size sub-computations into a grid, the number of such subcomputations can

be dynamic—this is where dynamic sizes come in. For each type that is acceptable

as an array length, there is an instance of class ASize that supplies a single function,

sizeConv, that enables conversion to a format used by Obsidian internally (currently

Exp Word32).

In code examples, we use shorthands for pull arrays of static and dynamic length:

type SPull a = Pull Word32 a

type DPull a = Pull EWord32 a

Below is an example of a function on pull arrays. The halve function takes a pull

array as input and returns a pair of pull arrays. The ! operator represents indexing

into a pull array.

halve :: (Integral i, ASize l) ⇒ i → Pull l a → (Pull l a, Pull l a)

halve arr = (Pull n2 (λix → arr ! ix),

Pull (n - n2) (λix → arr ! (ix + n2)))

where n = len arr

n2 = n ‘div‘ 2



A language for hierarchical data parallel design-space exploration on GPUs 9

This halve function creates two new views on the array passed in. The views

index into the given array in slightly different ways. This is typical of operations

that take pull arrays apart.

4.3 Programs

The Program t a data type represents parallel and sequential computations on the

GPU. A Program is parameterised on the level of the GPU on which it is to be

executed; thus the t parameter can have one of the following types: Thread, Warp,

Block or Grid. The Program type represents low level imperative programs and

contains functionality for assigning to memory, allocating memory and iterating in

sequence or parallel. Figure 3 lists some low-level functions related to the Program

data type. Any Obsidian program that uses parallelism or shared memory thus

involves this Program data type. For example, the function compute takes an array

(a delayed, pull or push, array), computes all values and writes them to shared

memory. The result of compute is always a pull array that reads values from the

newly created array in shared memory:

class Compute t ⇒ ComputeAs t a where

compute :: Data e ⇒ a Word32 e → Program t (Pull Word32 e)

The compute function takes as input an array, here a Word32 e. The a type can

be either Pull or Push t. The Push array type is implemented in terms of programs

and is thus defined in the following section. The elements of this input array are

constrained by the Data e constraint. The compute function’s return value of type

Program t, encodes an iteration schema over its input array and writes all elements

to the manifest array it creates in memory. The t parameter is restricted by the

Compute t constraint. There is an instance of Compute for Thread, Warp and Block,

since at these levels of the GPU hierarchy, shared memory can be used. There is no

instance for Grid.

4.4 Push arrays

Now enough Obsidian details have been explained to introduce push arrays (Claessen

et al., 2012). A push array has a length and a function, the push-function. The job

of the push-function is to generate a control structure that generates all elements of

the array, pushing them individually to a writer function. Thus, the push-function is

itself higher order:

data Push t s a = Push s (PushFun t a)

type PushFun t a = Writer a → Program t ()

type Writer a = a → EWord32 → Program Thread ()

A consumer of a push array needs to apply the push-function to a suitable writer.

Commonly, the push-function is applied to a writer that stores its input value at the

provided input index into memory. This is what the compute function does when

applied to a push array.
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Fig. 1. A selection of functions on pull arrays.
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Fig. 2. The Array class contains functionality that is shared between pull and push arrays.

Fig. 3. Low-level functions on programs. Most of the time, we expect Obsidian programmers

not to need to use such low-level functions. However, they are available for when very fine

control is desired. In reference (Svenningsson et al., 2013), very low-level programming in

Obsidian is illustrated.

The function push converts a pull array to a push array:

push :: (t *<=* Block, ASize s) ⇒ Pull s e → Push t s e

push (Pull n ixf) =

mkPush n $ λwf →
forAll (sizeConv n) $ λi →wf (ixf i) i
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This function sets up an iteration schema over the elements as a forAll loop. It

is not until the t parameter is fixed in the hierarchy that it is decided exactly how

that loop is to be executed. All iterations of the forAll loop are independent, so it

is open for computation in series or in parallel.

The t *<=* Block constraint is there to rule out conversion of a pull array to a

push array at the Grid level. Allowing this conversion would mean that the decision

on the number of blocks and the number of elements to process per block would

have to be taken automatically. In general, the *<=* type operator is used to restrict

functions to operating up to a certain level.

Since push arrays can be unintuitive, three examples are shown below. The iota

function creates a push array with value i at index i. The aMap function maps a

function over a push array. And finally ixMap applies an index transformation to

the array.

iota s = Push s $ λwf →
do

forAll (sizeConv s) $ λix → wf ix ix

aMap f (Push s p) = Push s $ λwf → p (λe ix → wf (f e) ix)

ixMap f (Push s p) = Push s $ λwf → p (λe ix → wf e (f ix))

The iota function iterates from 0 to s − 1 and at each index, ix, pushes the

value, ix, through the write-function. Mapping a function f over the elements

of a push array is done by creating a new push array. The new push array

uses the existing array’s push-function but alters the write function to first apply

the function f to the elements. Mapping an indexing transformation works in

a way very similar to aMap, but, instead, the transformation is applied to the

index.

A selection of functions on push arrays can be found in Figures 1 and 2.

Finally, some functions can be implemented on both pull arrays and push arrays.

This shared functionality is captured by an Array class (shown in Figure 2). There

is also a class called ArrayLength with instances for all arrays that allow a len

function, yielding the array’s length.

4.5 Pull and push arrays: Important differences

Neither pull nor push arrays represent data in memory; rather, they represent two

different ways of computing array elements. A pull array supports efficient indexing,

in that any element can be computed and accessed independently. A push array, on

the other hand, encodes its own iteration schema. A consumer is forced to use the

push array’s built-in iteration pattern, and accessing any one element requires first

computing the entire array.

The reason for having these two array representations is their complementary

strengths and weaknesses. The properties of pull and push arrays are summarised

in the table below.
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Property Pull Push

Fusion Yes Yes

Parallel Yes Yes

Efficient indexing Yes No

Efficient concat No Yes

Efficient interleave No Yes

Operations on both pull and push arrays fuse by default. The classical example of

this is (map f) . (map g) which does not require an intermediate array stored in

memory. Moreover, conversion from pull to push array does not require intermediate

storage either. Conversion in the other direction, push to pull, does require storage

into memory. Push to pull array conversion is done using the compute function;

this is the programmer’s way to choose when not to fuse. Thus, if an array

resulting from an expensive computation is used in more than one place, using

compute on that array ensures that the expensive computation takes place only

once.

Both pull and push arrays allow for parallelism. In the case of push arrays, the

iteration schema, parallel or sequential, is encoded in the array. When a push array

is computed, that schema is executed, yielding the array’s elements. A pull array does

not come with such a predetermined computation schema. When compute is used

on a pull array, a schema determined by the hierarchy parameter, t, decides how it

is computed. For example, if t is Thread, a sequential loop is instantiated (with trip

count equal to array length); whereas, if t is Block, a parallel loop, using the threads

at the Block level, is created. Note that the array may be longer than the actual

number of threads available at a particular level, meaning that computing an array

must use virtual threads, multiplexed onto available physical threads. Currently, these

virtual threads are implemented by wrapping an extra sequential loop around the

parallel computation; thus large arrays are computed chunk by chunk. Section 5.1.3

covers code generation details.

Again, when accessing index i in a pull array, no other element of that array

need be touched. The cost of indexing into a pull array could, however, be entirely

arbitrary, because the pull array represents a delayed computation at each element.

Such a delayed computation could, for example, touch every element of some other

array. Only when a pull array is the direct result of a compute is it guaranteed to

be a traditional, O(1), access to shared memory. Likewise accessing arrays that are

inputs to the Obsidian program has the cost of a global memory read (a constant

cost, but a significantly higher one). By contrast, a push array does not allow for

efficient random access; rather it must be converted into a pull array with compute.

Tools for reasoning about the cost of indexing into pull arrays are not currently

available to the programmer. One alternative is to track at the type level whether or

not this array is manifest, as Repa does (Keller et al., 2010). The provision of some

means to estimate costs of computations is left as future work.
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Concatenation and interleaving can be implemented on both pull and push arrays.

On pull arrays, however, these functions are implemented using a conditional. The

code for concatenating two pull arrays is shown below. This function is a member

of the Array class (Figure 2) and has the same name for both pull and push

arrays:

append a1 a2 = mkPull (n1+n2)

$ λix →ifThenElse (ix <* sizeConv n1)

(a1 ! ix)

(a2 ! (ix - sizeConv n1))

where

n1 = len a1

n2 = len a2

Computing a pull array that is the result of an append leads to a loop (parallel

or sequential) that for each iteration executes a conditional.

for i in 0..(n1 + n2 - 1)

data[i] := if (i < n1)

then . . .

else . . .

The case for interleaving pull arrays is worse still. There the conditional would

take different paths for even and odd iterations. If executed in parallel on the

GPU, this pattern creates thread divergence where half of the threads of each warp

will be turned off at each point in time, wasting half of the GPU’s arithmetic

units.

A better approach is often to do away with the conditional and instead execute

two loops. Indeed, we use this approach to concatenate and interleave push

arrays:

append p1 p2 =

mkPush (n1 + n2) $ λwf →
do p1 <: wf

p2 <: λa i → wf a (sizeConv n1 + i)

where

n1 = len p1

n2 = len p2

Here, the function <: applies a push array’s push-function to a write-function.

When using compute on a push array that is the result of append, the generated

code has the following form.

for i in 0..(n1-1)

data[i] := . . .

for i in 0..(n2-1)

data[i+n1] := . . .

These differences between pull and push arrays are the motivation for having

both representations in Obsidian.
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4.6 Compute and parallelism

The function compute is used for storing intermediate arrays into memory. It is

also important when it comes to expressing parallelism. Take the following function,

for example, which sums up the elements of an array (like the reduction example

earlier):

sumUp :: Pull Word32 EWord32 → EWord32

sumUp arr

| len arr == 1 = arr ! 0

| otherwise =

let (a1,a2) = halve arr

arr’ = zipWith (+) a1 a2

in sumUp arr’

This function halves the input array and performs element wise addition between

the halves. Then, it recurses and proceeds until there is only one element. This code

implements sequential summation of an array, as there is nothing in the function

that realises the potential parallelism. One could imagine that zipWith would have

a parallel implementation, but that is not the case here. zipWith just takes two

pull arrays and produces a new one. Notice that the sumUp function completely

unrolls the recursion, creating an expression tree representing the summation of the

array. This means that the length of the array must be known when evaluating the

meta-program. It is not possible to implement a variant of sumUp that takes an

input of type Pull EWord32 EWord32.

The code generated from the sumUp function defined above would have the

following appearance:

output[0] = input[0] + input[4] +

input[2] + input[6] +

input[1] + input[5] +

input[3] + input[7];

The code above is parallelised by inserting a compute operation. This change

affects the type of the function and also involves using do notation.

sumUp’ :: Pull Word32 EWord32 → Program Block EWord32

sumUp’ arr

| len arr == 1 = return (arr ! 0)

| otherwise = do

let (a1,a2) = halve arr

arr’ ← compute (zipWith (+) a1 a2)

sumUp’ arr’

In this function, the result of the zipWith is computed and stored into shared

memory, using compute. This computation of the pull array is performed using

the threads of the block level in the hierarchy, as that is the hierarchy level of

the resulting program. Thus, the above program becomes implicitly parallel in a

type-directed manner. The code generated from this function will consist of a series

of parallel stages:
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parfor (i in 0 . . . 3)

imm0[i] = input[i] + input[i+4];

parfor (i in 0 . . . 1)

imm1[i] = imm0[i] + imm0[i+2];

parfor (i in 0 . . . 0)

output[i] = imm1[i] + imm1[i+1];

4.7 Programming the hierarchy

As we’ve glimpsed so far, in Obsidian, the programmer is in control of how to lay

out computations onto the GPU hierarchy. The hierarchy consists of the four levels:

Thread, Warp, Block and Grid. There are limitations, imposed by the GPU hardware,

on what can be done at the various levels. These limitations are summarised in the

following table:

Level Parallelism Shared memory Thread synchronisation

Thread No Yes Sequential execution

Warp Yes Yes Lock-step execution

Block Yes Yes Yes

Grid Yes No No

At levels Thread, Warp and Block, programs are also limited by the size of

shared memory. That means that any intermediate array storage has to fit within

shared memory. Shared memory size varies between GPU models, but 48 kB per

multiprocessor is common. At the Grid level, the program’s memory usage is limited

by the global memory, usually a few gigabytes.

The types for both programs and push arrays (Program t and Push t) have

a parameter t that designates at which level in the hierarchy they are computed.

At the bottom of this hierarchy is the Thread. Then, a type function called Step

increments a hierarchy level to the next level above it.

data Thread

data Step t

type Warp = Step Thread

type Block = Step Warp

type Grid = Step Block

Some operations are only possible at a level less than or equal to a given t. This

restriction is captured by a type class ∗<=∗.

class a *<=* b

The Compute class has an instance for all levels in the hierarchy that support

storing intermediate data in shared memory and synchronising. Storing in shared

memory can be done at any level less than or equal to Block.
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class (t *<=* Block, Sync t, Write t) ⇒ Compute t

The Sync class has an instance for all hierarchy levels that allow synchronising. On

the Thread level, the synchronisation points are simply implemented as sequential

composition. On the Warp level, there is an extra caveat: the arrays operated upon

should be marked as volatile, in the generated CUDA. If the array is not marked

as volatile there is a chance that, on some CUDA architectures, the values will be

kept in registers as an attempted optimisation. Obsidian marks arrays that are used

within a warp as volatile to ensure that the data is consistent across threads.

On the Block level, however, storing data into shared memory is followed by a

thread barrier synchronisation. The Write class implements the actual writing into

memory at those levels that support it. The Sync and Write classes are considered

internal to Obsidian, while the Compute class is visible in the API exposed to the

programmer.

We now return to the reduce function from Section 3, whose type is shown below.

From now on, we make use of the SPull and SPush type aliases:

reduce :: (Compute t, Data a) ⇒
(a → a → a) → SPull a → Program t (SPush t a)

Thus, reduce is hierarchy-generic, but restricted. The t parameter must be Block or

lower in order to satisfy the Compute t constraint. To illustrate this hierarchy-level

polymorphism, the same reduce kernel is instantiated on two levels separated by a

Step:

reduce2stage :: (t *<=* Block

, Step t *<=* Block

, Compute t

, Compute (Step t)

, Data a)

⇒ (a → a → a)

→ SPull a → Program (Step t) (SPush (Step t) a)

reduce2stage f arr = do

arr’ ← compute $ liftPar $ fmap body (splitUp 32 arr)

reduce f arr’

where body a = exec (reduce f a)

The code above instantiates the base reduction kernel reduce at two levels, while

keeping the result as hierarchy-level generic as possible. Of course, this increases

the complexity of the type of reduce2stage. A less polymorphic version might

specialise the function to do the reduction specifically on the Warp and Block levels,

as follows:

reduce2stage’ :: Data a

⇒ (a → a → a)

→ SPull a → Program Block (SPush Block a)

reduce2stage’ f arr = do

arr’ ← compute $ asBlock $ fmap body (splitUp 32 arr)

reduce f arr’

where body a = execWarp (reduce f a)



18 B. J. Svensson et al.

Figure 4 lists the hierarchy-generic and hierarchy-specific functions that make

up the hierarchy programming API. The examples above also make use of exec

functions, such as execBlock and execWarp. These functions are used to run a

Program, yielding its payload. The exec functions are listed in Figure 5.

When programming the hierarchy, the approach is to split a pull array up into a

nested pull array using the splitUp function. These arrays are then distributed over

the parallel resources and computed on individually. Each distributed computation

results in a pull array of either push arrays or programs.

If the function being mapped over the inner arrays uses shared memory, its result

will be a value of type Program t. If it does not use shared memory, the result type

could, however, potentially be a pull or a push array. The hierarchy programming

functions in Figure 4 are designed to operate with pull of push arrays. Using pull of

pull arrays in the hierarchy programming API would break down when forming a

grid, for example. A pull of pull array would imply that any thread in the grid can

access any element, but those elements reside in shared memory (local to a block). It

is, however, still possible for any thread of any block to put its element anywhere (that

is to push it to anywhere in global memory at the grid level). In this way, the combi-

nations of types that match the programmer’s API mirror the structure of the GPU

and guide the programmer towards using idioms that match the GPU’s capabilities.

5 Obsidian implementation

In this section, we show how to compile Obsidian into CUDA code, thus imple-

menting the concepts in Section 4. First, the Obsidian compiler deals with two types

of AST: scalar expressions (e.g. EWord32, see implementation of Exp below), and

Programs (statements, see Figure 6). Scalar expressions include standard first-order

language constructs (arithmetic, conditionals, etc).

data Exp a where

Literal :: Scalar a ⇒ a → Exp a

Index :: Scalar a ⇒ (Name,[Exp Word32]) → Exp a

If :: Scalar a ⇒ Exp Bool → Exp a→ Exp a → Exp a

BinOp :: (Scalar a, Scalar b, Scalar c)

⇒ Op ((a,b) → c) → Exp a → Exp b → Exp c

UnOp :: (Scalar a, Scalar b) ⇒ Op (a → b) → Exp a → Exp b

. . .

The Exp GADT defines the small language that is used at the element level in

Obsidian. The Scalar class used here is not for the end user; we provide an instance

for each scalar type that is representable in the Exp AST, namely numeric types.

Haskell tuples are used to build product types of the form (Exp a,Exp b), rather

than Exp (a,b). That Obsidian uses Haskell tuples rather than embedding its own

representation of them into the Exp type is the reason for the Choice class (amongst

other similar classes). Below, you can see how the Choice class enables ifThenElse
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Fig. 4. Functions for programming the hierarchy. In each of these functions, the resulting

push array is the concatenation of the sequenced computations.

to be more polymorphic than its counterpart in many DSLs that return only results

of the form Exp a.

class Choice a where

ifThenElse :: Exp Bool → a → a → a

instance Scalar a ⇒ Choice (Exp a) where

ifThenElse (Literal False) e1 e2 = e2

ifThenElse (Literal True) e1 e2 = e1

ifThenElse b e1 e2 = If b e1 e2

instance (Choice a, Choice b) ⇒ Choice (a,b) where

ifThenElse b (e1,e1’) (e2,e2’) = (ifThenElse b e1 e2,

ifThenElse b e1’ e2’)

instance (Choice a, Choice b, Choice c) ⇒ Choice (a,b,c) where

ifThenElse b (e1,e1’,e1’’) (e2,e2’,e2’’) = (ifThenElse b e1 e2,

ifThenElse b e1’ e2’,

ifThenElse b e1’’ e2’’)
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Fig. 5. The exec family of functions.

BinOp and UnOp provide the basic operations supported at the element level. There

are roughly 60 of those operations including arithmetic, trigonometric, comparison,

bitwise and conversion operations.

Apart from the Exp datatype, the compiler also has to deal with the Program type,

defined in Figure 6. The Program datatype represents mostly low-level operations

such as Assign (assignment to named array in memory) and Sync (barrier synchro-

nisation). However, it also includes operations that, at least compared to CUDA,

are slightly higher level; ForAll and DistrPar are examples of such operations.

The ForAll operation iterates a body (described by higher order abstract syntax)

a given number of times over the resources at a given level t, with the iterations

being independent of each other. If the level is Thread, this is a sequential iteration;

if it is Block or Warp, it is parallel. DistrPar, on the other hand, is used to iterate

a body at a given level, t, in parallel at the level directly above it, Step t.

The Bind and Return constructors enable a Monad instance for Program t; how

this works is explained in detail in reference (Svenningsson & Svensson, 2013). The



A language for hierarchical data parallel design-space exploration on GPUs 21

Identifier operation is used internally to generate new names for intermediate

arrays and variables.

Note that neither Exp nor Program mentions pull or push arrays. The pull and

push array representations are a shallow embedding implemented on top of the

Program and Exp datatypes. At the point where the compiler has an AST to work

on, all traces of pull and push arrays have been replaced by lower level operations

in the Program AST.

5.1 Compilation to CUDA

Compiling to CUDA requires the following steps, covered in this subsection:

1A Reification: Haskell functions representing Obsidian programs are turned into

ASTs, including generating names for arrays.

1B Stripping: The Program datatype is converted to an intermediate representation

based on lists. This intermediate representation makes hierarchy-level information

concrete.

2A Liveness Analysis: The intermediate representation is analysed to discover the

live ranges of arrays in shared memory. This stage annotates the intermediate

representation with liveness information, which keeps track of where an array is

created and at what point it can be freed.

2B Memory Mapping: The annotated intermediate representation goes through a

simple abstract interpretation, simulating it against a mock-up memory in order

to create a memory map.

3 CUDA Code Generation: At this stage, explicit parallel loops in the intermediate

representaton are compiled into CUDA. This is where virtualisation of threads,

warps and blocks takes place.

5.1.1 Reification and stripping

At this stage, Obsidian functions (Haskell functions using the Obsidian library) are

turned into ASTs. A complete Obsidian program has a type such as

prg1 :: Pull EWord32 EWord32 → Push Grid EWord32 EWord32

The example prg1 takes just one input. Programs with more than one input array

are, however, permitted as well. Reifying this program is as simple as applying it to

a named array in global memory: (Pull n (λ ix → Index ("input",[ix]))).

The function then yields its push array result. That push array, in turn, is a

Program parameterised on a write-function. Providing a write-function

(λ a ix → Assign "output" [ix] a), which writes to a named (global) array,

completes reification, yielding a Program AST.

The resulting Program AST is converted into a representation where the t

parameter is made concrete. The new representation is called IM.



22 B. J. Svensson et al.

Fig. 6. The Program GADT. Sequencing is provided via the monad Bind operations.

This allows sequences of statements in the AST to be generated using Haskell do

notation, for example, do Allocate ‘‘arr1’’ 512 Int; ForAll 512 body; Sync. In

reference (Svenningsson et al., 2013), we make use of the atomic operations represented

here to implement sorting algorithms.

type IMList a = [(Statement a,a)]

type IM = IMList ()

The parameter a is used to hold annotations on the nodes during subsequent

compilation phases. The Statement type is very similar to Program, but sequencing

of operations is replaced by the list type, IMList.



A language for hierarchical data parallel design-space exploration on GPUs 23

data Statement t = SAssign IExp [IExp] IExp

| SAtomicOp IExp IExp AtOp

| SCond IExp (IMList t)

| SSeqFor String IExp (IMList t)

| SBreak

| SSeqWhile IExp (IMList t)

| SForAll HLevel IExp (IMList t)

| SDistrPar HLevel IExp (IMList t)

| SAllocate Name Word32 Type

| SDeclare Name Type

| SSynchronize

data HLevel = Thread | Warp | Block | Grid

Here, IExp replaces Exp as the type for element-level expressions, and AST nodes

have been explicitly annotated with types.

5.1.2 Liveness analysis and memory mapping

The compute function, which introduces manifest arrays in shared memory, generates

unique names for each intermediate array. CUDA does not provide any memory

management facilities for shared memory, so in Obsidian, we analyse kernel memory

usage and create a memory map at compile time.

The amount of shared memory available in each GPU multiprocessor varies (but

it is always a small number, for example 48 kB). When using the capture function to

compile an Obsidian program, the GPU device is queried for the amount of shared

memory and number of memory banks; this information is used in the memory

mapping procedure.

Shared memory is a limited resource. Making good use (and reuse) of it is

important. The Obsidian IM AST already contains Allocate nodes (introduced by

the compute function) that show where arrays comes into existence. A standard

analysis computes the full live range of each array:

• Step through the list of statements in reverse. When encountering an array

name for the first time it is added to a set of live arrays. The list of statements

is annotated with this liveness information.

• When an Allocate statement is found, the array being allocated is removed

from the set of live arrays.

Following this analysis phase, a memory map is constructed using a greedy

strategy. This is done by simulating the AST execution against an abstraction

of the shared memory. The simulated shared memory is implemented as a list

of free ranges and a list of allocated ranges. Each “malloc” request is serviced
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with the first available memory segment of sufficient size. The maximum size

ever used is tracked, and in the end this number is the total amount of shared

memory needed for the kernel. Memory is allocated in such a way that the first

element of the array falls in memory bank zero; padding is inserted to ensure

this. If an array could start anywhere (for example, in the middle of bank

three), the programmer would have no chance of crafting good memory access

patterns.

An Obsidian program may end up trying to use too much shared memory.

Exhausting shared memory can happen if a kernel uses compute on many ar-

rays that are all alive at the same time. If this happens, compilation of that

program will fail at this stage. The alternative, to use global device memory

(and warn the programmer) when shared memory is exhausted, would lead to

drastically decreased performance. In the case-studies presented in this paper,

we have not run into difficulties because of the limited availability of shared

memory.

This greedy approach to memory management can potentially lead to memory

fragmentation, and the greedy solution is certainly not optimial. Improving the

memory management system is left as future work. Even though the memory

allocation process is not optimal, the memory layout it generates does not affect

performance of the kernel, since arrays will not spill to global memory. However,

it may waste memory and disallow a kernel that would compile had the memory

layout been optimal.

The upside of automatic shared memory management is that, in Obsidian, it is

much easier than it is in CUDA to reuse and remap shared memory within a large

kernel. The CUDA programmer would need to allocate a local array and then

manually cast portions of it for reuse, which is tedious and error prone. This is

another example of how the abstractions of functional programming can ease the

life of the kernel developer, removing tedium so that time and effort can be spent

on intelligently exploring the design space.

5.1.3 CUDA code generation

CUDA code is generated from the list of statements. This phase takes as a parameter

the number of real CUDA threads for which the code should be generated. So it is

here that resource virtualisation must be addressed. Most cases of this compilation

are very simple, as many statements correspond directly to their CUDA counterparts.

For example, an assignment statement, SAssign nameE [ixE] e, is compiled into

a C statement of the form arr_n[i] = j, where i and j are the results of recursively

translating the expressions ixE and e.

The interesting cases are those that deal with parallelism, such as the SForAll

and SDistrPar statements. For example, compiling a parallel-for, SForAll,

over threads in a block has the structure outlined in pseudo code

below:
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compileStm realThreads (SForAll Block n body) = goQ ++ goR

where

-- how to split the iteration space

-- across the realThreads.

-- q passes across all real threads

-- followed by a stage of using r real threads

q = n ‘quot‘ realThreads

r = n ‘rem‘ realThreads

goQ = for (int i = 0; i < q; ++i) {

-- repurpose tid

tid = i*realThreads + threadIdx.x;

body

}

goR = -- run the last r threads

if (threadIdx.x < r) {

. . .

}

Compilation of DistrPar performs a similar technique for the virtualisation of the

available number of warps and blocks.

6 Case studies

Obsidian is designed to assist users in crafting high-performance kernels. The aim

is to remove some of the tedium of index manipulation and memory management,

thus allowing more effort to be devoted to exploration of the design space and

performance improvement. This exploration could be manual or could take the

form of auto-tuning.

The following case studies start with a simple kernel, embarrassingly parallel with

no inter-thread communication. Even with such a kernel, there is non-trivial tuning

to maximise throughput. The remaining case studies consider key building blocks,

reduce and scan, that have data-flow graphs involving much more communication.

In a following section, we compare these against the corresponding kernels in the

NVIDIA Thrust and Accelerate libraries. Accelerate is a much higher level DSL

than Obsidian, but one with hand-tuned (though not auto-tuned) CUDA skeletons

for patterns like scan and fold.

6.1 Case study: Mandelbrot fractals

We begin with a simple case; here we show how to implement the Mandelbrot fractal

using Obsidian. It is an embarrassingly parallel program included as an example

of a complete Obsidian application, with all code contained in this section. In fact,

in spite of Mandelbrot’s simplicity, even it exhibits performance complexities—the

most efficient parameterisation (numbers of threads per block) differs between the

two GPUs we test in Table 1.

The Mandelbrot fractal is generated by iterating a function:

zn+1 = z2
n + c,
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where z and c are complex numbers. The method presented here is based on a

sequential C program from reference (Stevens, 1989).

In order to generate the Mandelbrot fractal, one lets z0 be zero and maps the x and

y coordinates of the image being generated to the real and imaginary components

of the c variable.

xmax, xmin :: EFloat

xmax = 1.2

xmin = -2.0

ymax, ymin :: EFloat

ymax = 1.2

ymin = -1.2

To obtain the well known and classical image of the set, we let the real part of c

range over −2.0 to 1.2 as the x coordinate ranges from 0 to 512, and similarly for

the y coordinate and the imaginary component.

-- For generating a 512x512 image

deltaP, deltaQ :: EFloat

deltaP = (xmax - xmin) / 512.0

deltaQ = (ymax - ymin) / 512.0

The image is generated by iterating the function presented above. We map the

height of the image onto blocks of executing threads. Each row of the image is

computed by one block of threads. This means that for a 512×512 pixel image,

512 blocks of 512 threads are needed. The function to be iterated is defined below

and called f. This function will be iterated until a condition holds (defined in the

function cond). We count the number of iterations and break out of the iteration if

it reaches 512.

f :: EFloat → EFloat

→ (EFloat, EFloat, EWord32)

→ (EFloat, EFloat, EWord32)

f b t (x,y,iter) =

(xsq - ysq + (xmin + t * deltaP),

2*x*y + (ymax - b * deltaQ),

iter+1)

where

xsq = x*x

ysq = y*y

cond :: (EFloat, EFloat, EWord32) → EBool

cond (x,y,iter) = ((xsq + ysq) <* 4) &&* iter <* 512

where

xsq = x*x

ysq = y*y

The number of iterations executed is used to decide which colour to assign to the

corresponding pixel. In the function below, seqUntil iterates f until the condition
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cond holds. Then, the number of iterations is extracted and used to compute a

colour value (out of 16 possible values).

iters :: EWord32 → EWord32 → SPush Thread EWord8

iters bid tid =

fmap extract (seqUntil (f bid’ tid’) cond (0,0,1))

where

extract (_,_,c) = (w32ToW8 (c ‘mod‘ 16)) * 16

tid’ = w32ToF tid

bid’ = w32ToF bid

The final step is to run the iteration for each pixel location, by implementing a

genRect function that spreads a sequential Push Thread computation across the

grid.

genRect :: EWord32

→ Word32

→ (EWord32 → EWord32 → SPush Thread b)

→ DPush Grid b

genRect bs ts p = asGrid

$ mkPull bs

$ λbid →asBlock $ mkPull ts (p bid)

Generating the Mandelbrot image is done by generating a rectangle, applying the

iters function at all points.

mandel :: DPush Grid EW8

mandel = genRect 512 512 body

where

body i j = execThread’ (iters i j)

Running the mandel program and generating a raw output image is done as

follows:

import qualified Data.Vector.Storable as V

import Data.ByteString as BS

performMandel :: IO ()

performMandel =

withCUDA $

do

kern ← capture 256 mandel

allocaVector (512*512) $ λo →
do

o <== (256,kern)

r ← copyOut o

lift $ BS.writeFile "fractal.out" (pack (V.toList r))

This is a case where virtualisation of threads and blocks helps the programmer.

The code generates a 512×512 pixel image using 512 blocks each of 512 threads.

The blocks and threads, however, can be virtual, meaning we can still generate the

512×512 image using for example 64 (real) blocks of each 64 (real) threads. It also
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Table 1. Running times for the Mandelbrot program. The left table shows times measured on an

NVIDIA GTX680 GPU. The right table shows times measured on an NVIDIA TESLA c2070.

The columns vary the number of threads-per-block, while the rows vary image size (square

images). Each benchmark was executed 1,000 times and the total time is reported in seconds.

The transfer of data to or from the GPU is not included in the timing measurements

Size 32 64 128 256 512 1024 Size 32 64 128 256 512 1024

256 0.25 0.17 0.12 0.21 0.33 0.60 256 0.44 0.38 0.41 0.36 0.41 0.98

512 0.71 0.43 0.34 0.41 0.69 1.16 512 1.44 1.16 1.17 1.16 1.14 2.00

1024 2.41 1.39 1.05 1.22 1.53 2.58 1024 5.12 3.96 3.95 3.98 4.17 4.75

2048 8.86 4.98 3.67 3.88 4.69 5.95 2048 18.80 14.53 14.38 14.48 14.84 17.50

4096 34.21 18.82 13.69 14.07 15.36 18.65 4096 72.12 55.36 54.94 55.16 55.67 61.89

Fig. 7. Left: evenOdds - zipWith reduction, leads to uncoalesced memory accesses. Right:

halve - zipWith reduction, leads to coalesced memory accesses. This coalescing is most

important during the very first phase, when data is read from global memory.

means that images larger than 1024 pixels wide are possible (where 1,024 is the

hardware limit on the number of threads per block). Also, in Obsidian, these limits

can be broken without any burden on the programmer, which would not be the case

if programming in CUDA. Using CUDA, the programmer would directly implement

those sequential loops and the indexing arithmetic to go with them.

6.2 Case study: Reduction

In this section, we implement a series of reduction kernels. These Obsidian reductions

take an associative operator as a parameter. In these benchmarks, the reduction will

be addition only and the elements will be 32 bit unsigned integers. Some of the

reduction kernels will also require that the operation be commutative.

To illustrate the kind of low-level control that an Obsidian programmer has

over expressing details of a kernel, each reduction kernel in the series has different

optimisations applied. Many of the optimisations applied to the kernels can be

found in a presentation from NVIDIA (Harris, 2007). This section focuses on

local reduction kernels (on-chip storage only). In Section 7.1, these kernels are

used as building blocks in the construction of reduction algorithms for millions of

elements. Nevertheless, even these local kernels expose a large search space of both
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Fig. 8. Top: BAD Adding sequential reductions like this reintroduces memory coalescing

issues. Consecutive threads no-longer access consecutive memory locations. Bottom: GOOD

Using sequential reduction but maintaining coalescing.

implementation strategies and tuning parameters. While we only varied threads-per-

block in the last subsection, in this subsection and the next we consider the following

tuning parameters:

• threads-per-block - The number of threads per block used by each in-

stance of the reduction kernel. This parameter takes on the values from

[32,64,128,256,512,1024]

• elements-per-block - The number of elements reduced by one instance of the

kernel. This parameter takes on the values from [256,512,1024,2048,4096,

8192,16384,32768].

• kernel-implementation - Seven different reduction kernels (called red1 to red7).

The largest elements-per-block size is only applicable using some of the

reduction kernels (red4 to red7).

In our experiments, we vary all of these parameters resulting in 312 configurations

in each benchmark run. Figure 9 and Table 2 show one way to aggregate these results.

6.2.1 Reduction 1: Recursively collapse adjacent

Our first attempt at reduction combines adjacent elements repeatedly. This approach

is illustrated on the left of Figure 7. In Obsidian, this entails splitting the array into

its even and its odd elements and using zipWith to combine these. This procedure
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is then repeated until there is only one element left. This kernel will work for arrays

whose length is a power of two.

red1 :: Data a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block (SPush Block a)

red1 f arr

| len arr == 1 = return $ push arr

| otherwise =

do

let (a1,a2) = evenOdds arr

imm ← compute (zipWith f a1 a2)

red1 f imm

The above code describes what one block of threads does. To spread this

computation out over many blocks and thus perform many simultaneous reductions,

asGridMap is used:

mapRed1 :: Data a

⇒ (a → a → a)

→ Pull EWord32 (SPull a)

→ Push Grid EWord32 a

mapRed1 f arr = asGridMap body arr

where

body arr = execBlock (red1 f arr)

This kernel does not perform well (Table 2), due to its memory access pattern.

Remember that one gets better performance on memory access when consecutive

threads access consecutive elements. In this kernel, consecutive threads access

elements in a strided fashion. Thread zero accesses elements 0 and 1, thread one

accesses elements 2 and 3. It would have been much better if thread i accessed

element i and n + i, for some stride n, which brings us to the next reduction kernel.

6.2.2 Reduction 2: Recursively halve and combine

The red2 kernel, tries to improve the memory access pattern by making consecutive

threads access consecutive array elements. It does this by halving the input array

and then using zipWith on the halves (see Figure 7). This choice can only be made

if the operator is commutative.

red2 :: Data a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block (SPush Block a)

red2 f arr

| len arr == 1 = return $ push arr

| otherwise =

do

let (a1,a2) = halve arr

arr’ ← compute (zipWith f a1 a2)

red2 f arr’
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6.2.3 Reduction 3: deforest the last shared memory copy

The two previous implementations of reduce write the final value into shared memory

(as there is a compute in the very last stage). This means that the last element is

stored into shared memory and then directly copied into global memory. This can

be avoided by cutting the recursion off at length 2 instead of 1, and performing the

last operation without issuing a compute.

red3 :: Data a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block (SPush Block a)

red3 f arr

| len arr == 2 =

return $ push $ singleton $ f (arr ! 0) (arr ! 1)

| otherwise =

do

let (a1,a2) = halve arr

arr’ ← compute (zipWith f a1 a2)

red3 f arr’

This kernel cuts recursion off at length 2 and when the array reaches that length,

the remaining two elements are combined directly using f. Performing this cutoff at

two elements does not change the overall depth of the algorithm, but, since there is

no call of compute in the last stage, the result will not be stored in shared memory.

This optimisation has a very small effect on performance.

6.2.4 Reduction 4: Add sequential reduction, increase elements-in-sequence

Now we have a set of three basic ways to implement reduction and can start ex-

perimenting with adding sequential, per-thread, computation. red4 uses seqReduce,

which is provided by the Obsidian library and implements a sequential reduction

that turns into a for loop in the generated CUDA code. The input array is split into

chunks of eight that are reduced sequentially. The partial results are reduced using

red3.

red4 :: Data a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block (SPush Block a)

red4 f arr =

do arr’ ← compute $ asBlockMap (execThread’ ◦ seqReduce f)

(splitUp 8 arr)

red3 f arr’

Unfortunately, adding seqReduce reintroduces memory coalescing problems—

because each thread reads consecutive elements in time, rather than striding at

warp-sized steps (Figure 8)—to the detriment of performance (Table 2).
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6.2.5 Reduction 5, 6 and 7: restore coalescing, vary elements-in-sequence

Next, in red5, red6 and red7, we address the coalescing problem by defining a

function to split up the array into sub arrays, such that the elements in the inner

arrays should be drawn from the original array in a strided fashion. Again, the idea

is to maintain consecutive accesses by consecutive threads.

coalesce :: ASize l

⇒ Word32

→ Pull l a

→ Pull l (Pull Word32 a)

coalesce n arr =

mkPull s (λi →
mkPull n (λj → arr ! (i + (sizeConv s) * j)))

where s = len arr ‘div‘ fromIntegral n

The coalesce function shows another benefit of high-level GPU meta-programming:

index permutations need not pollute the consumer’s code, they simply return new,

first-class (delayed) arrays. With coalesce in place of splitUp, we implement a

parameterised reduction kernel. The parameter n specifies the degree of sequential

work.

redParam :: Data a

⇒ Word32

→ (a → a → a)

→ Pull Word32 a

→ Program Block (SPush Block a)

redParam n f arr =

do arr’ ← compute $ asBlockMap (execThread’ ◦ seqReduce f)

(coalesce n arr)

red3 2 f arr’

Using the parameter n, we can push the tradeoff between the number of threads

and the sequential work-per-thread further. The kernels red5, red6 and red7

vary this parameter to reduce 8, 16 and 32 elements in the sequential phase,

respectively. That is, they differ only in varying the elements-in-sequence parameter.

The performance of the fastest of these kernels is very satisfactory, at a level where

the kernel is limited by memory bandwidth.

red5 = redParam 8

red6 = redParam 16

red7 = redParam 32

6.3 Case study: Scan

In the scan case study, we compute all the prefix sums of a sequence of values using

a binary associative operator (where scan is familiar to Haskell programmers as the
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Table 2. The numbers reported in Figure 9 represent the best parameter settings found. These

settings are difficult to predict in advance. This table shows the best threads-per-block for each

of the reduction kernels. Some of the kernels use virtualised threads and are highlighted. Again,

elements-per-block varies over the X axis

Kernel 256 512 1024 2048 4096 8192 16384 32768

red1 64 128 128 256 256 512 512 n/a

red2 64 128 64 128 256 512 512 n/a

red3 64 128 64 128 256 512 512 n/a

red4 64 64 128 64 64 64 128 512

red5 32 64 64 64 128 256 256 512

red6 32 32 64 64 128 128 256 256

red7 32 32 32 64 128 128 512 128

256 512 1,024 2,048 4,096 8,192 16,384 32,768
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Fig. 9. The running time of 8,192 blocks executing a reduction kernel. The time reported is

the sum of 1,000 executions of the 8,192 blocks grid, excluding transfer time of data to GPU

memory. The X -axis varies elements-per-block, but each point represents the best setting for

threads-per-block. These numbers are collected on an NVIDIA GTX680.

scanl1 function). Given an array of values a0, a1, . . . , an and associative operator ⊕,

the scan operation computes a new array:

s0 = a0

s1 = a0 ⊕ a1

. . .

sn = a0 ⊕ a1 ⊕ · · · ⊕ an

During performance evaluation of the scan kernels developed here, we vary the

following tuning parameters:



34 B. J. Svensson et al.
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Fig. 10. Sklansky parallel prefix network.

• threads-per-block - The number of threads per block used by each instance of

the scan kernel. This parameter takes on the values from [32,64,128,256,

512,1024]

• elements-per-block - The number of elements reduced by one instance of the

kernel. This parameter takes on the values from [256,512,1024,2048,4096].

• kernel-implementation - We use five different scan kernels. Three of the scan

variants are based on the Sklansky network and two on the Kogge–Stone

construction.

The total number of configurations is in this case 150. The results of these

experiments are presented in Figure 12 and Table 3.

6.3.1 Sklansky scan

We start by implementing a parallel prefix network attributed to Slansky (1960). This

network follows a simple divide and conquer decomposition as shown in Figure 10.

Data flows from top to bottom and boxes with two inputs are operators. At each

level, exactly half of the boxes are operators and in an imperative language the

algorithm would naturally be implemented in-place. Since we cannot easily express

in-place algorithms currently in Obsidian, this means that we need to copy unchanged

values into a new array during each phase. During a phase of compilation, Obsidian

analyses memory usage and lays out intermediate arrays in memory. In the case

of Sklansky scan kernels, this leads to a ping-ponging behaviour between arrays

occupying two areas of shared memory.

Also, the threads now do two different things (copy or perform operation).

One can have as many threads as elements, but then each thread must have a

conditional to decide whether to be a copy or an operation thread. Or we can

launch half as many threads and have each of them perform both a copy and

an operation. We will show code for both of these options; the first is easier to

implement.

The Obsidian code below implements the scan network from Figure 10, using as

many threads as there are elements. Note that thread virtualisation applies here,

supporting arrays larger than the actual number of GPU threads. The limiting factor

is the amount of shared memory.
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sklansky :: Data a

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky 0 op arr = return $ push arr

sklansky n op arr =

do let arr1 = unsafeBinSplit (n-1) (fan op) arr

arr2 ← compute arr1

sklansky (n-1) op arr2

The sklansky function is a kernel generator; the (Haskell) Int parameter can

be used to generate kernels of various sizes by setting it to the log base two of the

desired array size.

The unsafeBinSplit combinator used in sklansky is part of the Obsidian library

and used to implement divide and conquer algorithms. It divides an array recursively

in half a number of times (first parameter) and applies a computation to each part

(second parameter).

The unsafeBinSplit function is deemed “unsafe” because it may produce an

unexpected result if the array used as input has delayed operations on it. The

delayed operations will be replicated into each split of the array. In the context

above, unsafeBinSplit is safe.

The operation applied in this case is fan:

fan :: Data a

⇒ (a → a → a)

→ SPull a

→ SPull a

fan op arr = a1 ‘append‘ fmap (op (last a1)) a2

where

(a1,a2) = halve arr

The function fan splits an array in the middle and combines the last element of

the first half with each of the elements of the second half, using the operator op.

This fan behaviour can be seen at each level in Figure 10. The append used in this

function leads to conditionals in the generated code. In essence, each thread will

execute a conditional asking “am I a copy thread or an operation thread?”. These

kinds of conditionals are particularly bad when threads within the same warp take

different branches.

Both to avoid conditionals and to allow for larger scans per block, we move to

two elements per thread. Each phase of the algorithm is a parallel for loop that

is executed by half as many threads as there are elements to scan. The body of

the loop performs one operation and one copy, using bit-twiddling to compute

indices. Notice the use of two write functions in sequence. Similar patterns were

used in our implementations of sorting networks (Claessen et al., 2012), for similar

reasons.
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phase :: Int

→ (a → a → a)

→ Pull Word32 a

→ Push Block Word32 a

phase i f arr =

mkPush l (λwf → forAll sl2 (λtid →
do let ix1 = insertZero i tid

ix2 = flipBit i ix1

ix3 = zeroBits i ix2 - 1

wf (arr ! ix1) ix1

wf (f (arr ! ix3) (arr ! ix2) ) ix2))

where

l = len arr

l2 = l ‘div‘ 2

sl2 = fromIntegral l2

For an input of length 2n, n phases are composed as follows:

sklansky2 :: Data a

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky2 l f = compose [phase i f | i ← [0..(l-1)]]

The compose function sequentialises a list of programs, computing intermediate

arrays between each step.

compose :: Data a

⇒ [Pull Word32 a → Push Block Word32 a]

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

compose [f] arr = return $ f arr

compose (f:fs) arr = compose fs =<< compute (f arr)

Comparing the two kernels sklansky and sklansky2 in the NVIDIA profiler

indicates that sklansky2, while being faster than sklansky in many cases, has a

worse memory loading behaviour. This difference indicates that tweaking the way

data is loaded into shared memory may be beneficial in that kernel.

The sklansky3 code below improves the situation by breaking out a separate

load stage that reads data in a coalesced way.

sklansky3 :: Data a

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky3 l f arr =

do im ← compute $ load 2 arr

compose [phase i f | i ← [0..(l-1)]] im
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Fig. 11. Kogge–Stone parallel prefix network.

Here, we use load 2 to realise loading of two elements per thread but in a strided

way that is more likely to lead to a good memory access pattern. This function is

an example of one of the custom ways to create a push array from a pull array.

load :: Word32 → Pull Word32 a → Push Block Word32 a

load n arr =

mkPush m (λwf →
forAll (fromIntegral n’) (λtid →
do

seqFor (fromIntegral n) (λix →
wf (arr ! (tid + (ix*fromIntegral n’)))

(tid + (ix*fromIntegral n’)))))

where

m = len arr

n’ = m ‘div‘ n

The results of these optimisations are shown in Figure 12.

6.3.2 Kogge–stone scan

Figure 11 illustrates another approach to computing scan. The figure shows three

stages. In stage one, the input array is zipped with itself with one element dropped.

In stage two, the result of the previous stage is zipped with itself with two elements

dropped. In general, at stage n the number of elements dropped is 2n−1. As with

Sklansky, in each stage some values are copied unchanged. These unchanged values

are the 2n−1 first elements. This algorithm performs more work than the Sklansky

implementation, but it is very regular and therefore interesting to try out on the GPU.

The code below implements the Kogge–Stone prefix network kernel:

ksLocal :: Data a ⇒ Int → (a → a → a)

→ SPull a

→ Program Block (SPush Block a)

ksLocal 0 op arr = return $ push arr

ksLocal n op arr = do

arr2 ← compute =<< ksLocal (n-1) op arr

let m = 2^(n-1)

a1 = drop m arr2

oped = zipWith op arr2 a1

copy = take m arr2

all = copy ‘append‘ oped

return $ push all
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Fig. 12. The running time of 8,192 blocks executing scan kernel. The time reported is the

sum of 1,000 executions of the grid of 8,192 blocks, excluding transfer time of data to GPU

memory. The number of elements processed per block varies over the X -axis. Again, only

the best threads-per-block setting at each elements-per-block is shown. These numbers are

collected on an NVIDIA GTX680.

The Obsidian zipWith behaves the same as the standard zipWith on Haskell

lists. That is, if the two inputs are of different length, the result has a length equal

to the shortest of the inputs.

The implementation of ksLocal uses concatenation on pull arrays. A small change

to the program switches to a concatenation of push arrays.

ksLocalP :: Data a ⇒ Int → (a → a → a)

→ SPull a

→ BProgram (SPush Block a)

ksLocalP 0 op arr = return $ push arr

ksLocalP n op arr = do

arr2 ← compute =<< ksLocalP (n-1) op arr

let m = 2^(n-1)

a1 = drop m arr2

oped = push $ zipWith op arr2 a1

copy = push $ take m arr2

return $ copy ‘append‘ oped

Figure 12 shows a performance comparison of the scan kernels implemented here.

The Kogge–Stone variant using push array concatenation was the fastest.

6.4 Scan: More work per block

In the reduction kernels of Section 6.2, we used sequential computation per thread to

increase performance. The scan kernels implemented above will use virtual threads

when the local scan is sufficiently large. The amount of shared memory available

does however become a limiting factor when trying to increase the size of the local



A language for hierarchical data parallel design-space exploration on GPUs 39

Table 3. Shows what number of threads performed best for a given kernel and number of

elements to process per block

Kernel 256 512 1024 2048 4096

Sklansky 128 128 256 512 1024

Sklansky2 128 128 256 256 512

Sklansky3 128 128 256 512 512

Kogge–Stone 64 128 256 512 512

Kogge–Stone Push 64 128 256 512 512

scan. One way to circumvent this problem is to have each block perform more than

one scan in sequence and pass a carry value from the previous to the next instance.

Thus, the shared memory used by the earlier instances can be reused by the later

instances, and even more elements can be scanned per block.

This sequencing of parallel work, with a carry, can be implemented using a

function called sMapAccum implemented in terms of lower level Obsidian functions.

The sMapAccum function sequentially maps a computation over sub-arrays, while

accumulating a small amount of state, acc, between iterations.

sMapAccum :: (Compute t, Data acc, ASize l)

⇒ (acc → Pull l a → Program t (acc,Push t l b))

→ acc

→ Pull l (Pull l a)

→ Push t l b

In Section 7.2, this approach is used to implement efficient scan algorithms for

millions of elements. Still, the kernel building blocks used are the ones described

above, only wrapped with code for handling input carry values and producing a

carry out.

wrapKernCin :: Data a

⇒ ScanKernel a

→ Int → (a → a → a) → a → SPull a

→ Program Block (a, SPush Block a)

wrapKernCin kern n op cin arr = do

arr’ ← compute $ applyToHead op cin arr

arr’’ ← compute $ execBlock $ kern n op arr’

return (last arr’’, push arr’’)

where

applyToHead op cin arr =

let h = fmap (op cin ) $ take 1 arr

b = drop 1 arr

in h ‘append‘ b

The wrapKernCin function takes a ScanKernel, a type alias that matches the type

of the scan kernels, and transforms it into a kernel that also takes a carry-in value.

The carry-in value is combined with the first element of the input before passing it

to the wrapped scan kernel. The carry out is found in the result array at the last

index.
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Now a kernel that performs many scans in series connected via carry in–carry out

can be implemented.

sklanskies :: Data a

⇒ Int → (a → a → a) → a → SPull a → SPush Block a

sklanskies n op acc arr =

sMapAccum (wrapKernCin sklansky n op) acc (splitUp (2^n) arr)

The scan algorithms implemented in this way perform on par with hand-tuned

code as can been seen in the data presented in Section 7.2.

7 Combining kernels to solve large problems

We have seen how, with Obsidian, we can experiment with details of kernel code

generation. In Section 6, we saw that the description of a local kernel involves its

behaviour when spread out over many blocks. However, solving large problems must

sometimes make use of many different kernels or the same kernel used repeatedly.

Here, reductions are used to demonstrate the stitching together of combinations of

kernels.

7.1 Large reductions

We implement reduction of large arrays by running local kernels on blocks of the

input array. If the local kernel reduces n elements to 1 then this first step reduces

numBlocks∗n elements into numBlocks partial results. The procedure is then repeated

on the numBlocks elements until there is one value.

launchReduce = withCUDA (

do let n = blocks * elts

blocks = 4096

elts = 4096

kern ← capture 32 (mapRed5 (+) ◦ splitUp elts)

(inputs :: V.Vector Word32) ←
lift (mkRandomVec (fromIntegral n))

useVector inputs (λi →
allocaVector (fromIntegral blocks) (λ o →
allocaVector 1 (λ o2 → do

do o <== (blocks,kern) <> i

o2 <== (1,kern) <> o

copyOut o2))))

The code above shows an example of how to invoke GPU computations from

Haskell. Table 4 shows the running time for the above program executing a 224

element reduction; in that figure and in Figure 13, we compare Obsidian against

NVIDIA Thrust and Accelerate.

The evaluation of large reduction algorithms is done here in two different ways.

First, in Table 4, we vary reduction kernel and the number of threads. The number

of blocks launched and the total input array size is kept constant. The following list

specifies the configuration space used in Table 4:
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Fig. 13. The running time of reduction algorithms for larger data sizes. The time reported

is the sum of 1,000 executions, excluding data transfer to and from the GPU memory.

These numbers are collected on an NVIDIA GTX680. The presented Accelerate numbers are

estimates based on a lower number of iterations as explained in Appendix A. The Obsidian

numbers presented here come from the run with the parameter settings that performed the

best.

• threads-per-block - The number of threads per block used by each instance of

the scan kernel. This parameter takes on the values from [32,64,128,256,

512,1024]
• reduction-kernel - Seven different reduction kernels are used, (red1 to red7).

• total-number-of-elements - Always 16,777,216

• number-of-blocks - Always 4,096

In total, there are 42 different configurations.

In Figure 13, we try a different approach. The kernel used is kept constant, while

block size, total number of elements and threads per block vary. The following list

defines the configuration space:

• threads-per-block - The number of threads per block used by each instance of

the scan kernel. This parameter takes on the values from [32,64,128,256,

512,1024].
• number-of-blocks - The number of blocks on the GPU. This parameter takes

on the values from [16,32,64,128,256,512,1024].
• total-number-of-elements - The size of input array that is reduced to a single

value. This parameter takes on the values [8388608,16777216,33554432].

In total, there are 126 different configurations. The kernel used in the experiment

is an adaptation of red5 (Section 6.2) that selects an appropriate sequential depth

given the number of blocks and total number of threads. The three reduction kernels

red5, red6 and red7 are all very similar and all perform very well. They differ only

in the amount of sequential work performed.

7.2 Large scans

There are many different ways to implement scan algorithms on a GPU (Billeter

et al., 2009; Harris et al., 2007). The approach implemented in the benchmark used
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Table 4. Running times of 224 (16M) element reduction using Obsidian. The results were

obtained on an NVIDIA TESLA c2070 and on the GTX680. Each reduction procedure was

executed 1,000 times, and the total execution time is reported in the table. Seven different

reduction kernels (red1 to red7) are compared, each with varying parameter settings of number

of threads per block. The best threads per block setting for each kernel is listed in the table

Variant Parameter Seconds Parameter∗ Seconds†

On Tesla C2070:

red1 256 threads 0.75 32 2.11

red2 256 threads 0.80 32 2.41

red3 256 threads 0.80 32 2.41

red4 512 threads 1.07 1024 2.08

red5 256 threads 0.71 1024 1.88

red6 256 threads 0.69 1024 1.97

red7 128 threads 0.72 1024 1.97

On GTX680:

red1 256 threads 0.77 32 1.95

red2 256 threads 0.59 32 1.90

red3 256 threads 0.59 32 1.89

red4 64 threads 1.92 1024 2.72

red5 128 threads 0.45 1024 1.08

red6 128 threads 0.45 1024 1.15

red7 128 threads 0.45 1024 1.45

Comparison on GTX680:

Thrust 0.58

Accelerate 0.48

Obsidian‡ 128 threads 0.45

∗Worst parameter setting for this kernel.
†Runtime at worst parameter setting.
‡Fastest Obsidian reduction variant.

in this section uses both reduction kernels (from Section 6.2) and scan kernels (from

Section 6.3).

Below is an outline of the algorithm:

• The input array is divided into equal size chunks.

• Each chunk is reduced using a reduction kernel. This step yields a “carry”

value for each chunk.

• The array of carry values is scanned using a scan kernel. This step is cheap;

there will be a small number of values to process here (as many as the number

of chunks). However, it does require an inclusive scan kernel. Fortunately, this

can be implemented as a small wrapper around the already implemented scan

kernels.

• The chunked input array and the array of carry values are processed by a grid

of scan kernels taking a carry in. This step concludes the computation.

In the search for the scan implementation resulting in the performance numbers

in Figure 14, we ran a large number of experiments. The configuration space is

described below:
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Fig. 14. The running time of scan algorithms for larger data sizes. The time reported is the sum

of 1,000 executions, excluding data transfer to and from the GPU memory. These numbers

are collected on an NVIDIA GTX680. The presented Accelerate numbers are estimates based

on a lower number of iterations as explained in Appendix A.

• threads-per-block - The number of threads per block used by each instance of

the scan kernel. This parameter takes on the values from [32,64,128,256,

512,1024].

• Scan-kernel - Three different scan kernels adapted for carry in.

• Inclusive-scan-kernel - Five different inclusive scan kernels. Varying these had

little to none impact given how little data this stage operates upon.

• total-number-of-elements - Takes on values from [8388608,16777216,

33554432].

• number-of-blocks - This parameter takes on values from [16,32,64,128,256,

512,1024].

The total number of configurations run was 1,980.

8 Evaluation

In this section, we evaluate the results obtained in the various case studies from

Sections 6 and 7. The examples in Section 6 concern single kernels, either as a

complete application (Mandelbrot) or as a building block for solving larger problems

(Reduction and Scan). In Section 7, these building blocks are combined, via several

kernel launches on the GPU, in order to perform reduction or scan of millions of

elements.

The GPUs used to obtain performance measurements are the NVIDIA TESLA

c2070 and the GTX680. The GTX680 is not used to drive any display, which could

potentially introduce noise in the benchmark results. The TESLA c2070 is a compute

capability 2.0 GPU with 14 multiprocessors each containing 32 CUDA cores for a
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Fig. 15. This chart shows a comparison of red1 and red2 from Figure 9. The chart shows

the impact of changing memory access pattern.

total of 448 CUDA cores. The GTX680 GPU supports compute capability 3.0 and

has a total of 1,536 CUDA cores split over eight multiprocessors.

8.1 Reduction kernels

The performance measurements in Section 6 compare different versions of kernels

generated by Obsidian. The purpose of these measurements is to show the impact

on performance of the changes to the Obsidian programs or of tuning the exposed

parameters.

For example, Figure 15 shows a performance comparison between red1 and red2 .

The chart shows that changing the memory access pattern improves performance,

even on small sizes. From the information in Table 2, we see that the fastest kernels

generated for these sizes used virtualised threads. This means that even though the

GPU could run enough threads in parallel per block to compute these reductions,

the fastest versions of the kernels sequentialise work per thread.

The kernel named red4 is the first reduction kernel that explicitly sequentialises

work. In this case, the sequential work is performed in a very different way compared

to the implicit sequential work introduced by virtualisation. Here, each thread reads

a number of elements and accumulates a sum before writing the result to shared

memory. The sequential code introduced by virtualisation uses more memory, by

storing intermediate results. The red4 kernel is very slow, which can be explained

by its memory access pattern. Figure 16 shows what happens when going from red4

to red5 in terms of running time. The red5 code is in the group of the fastest

reduction kernels generated in this case study.

8.2 Scan kernels

In Section 6, two algorithms for computing prefix sums are implemented (Sklansky

and Kogge–Stone). In this case, the performance increase comes from removing

conditionals that take different paths on different threads within a warp. The

difference between sklansky and sklansky2 is mainly that sklansky2 avoids
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Fig. 16. This chart shows a comparison of red4 and red5 from Figure 9. The chart shows

the impact of changing memory access pattern.

the conditionals by performing both a direct copy of an unchanged value and a

combining operation on two values in each thread, in sequence. In sklansky3, an

extra step is added where the data is read from global memory, making sure that

this data is read in a more efficient, coalesced, way. This coalescing leads to a

further slight improvement. The Kogge–Stone kernels, however, start out with what

already looks like a fairly good memory access pattern. In Figure 12, the kslocal

variant is faster than the original sklansky, most likely due to this memory access

pattern. The kslocal kernel however has the same issue as sklansky when it comes

to executing diverging conditionals, which in this case is fixed by switching from

append on pull arrays to append on push arrays.

8.3 Benchmarks

In Section 7, kernels generated using Obsidian are combined to solve larger instances

of reduction and scan problems. The Obsidian implementations are compared to

NVIDIA Thrust and to Accelerate.

Comparing to Thrust and Accelerate is, however, not entirely fair. The Thrust and

Accelerate reduction code is applicable to arrays of any size, while code generated

using Obsidian is specialised for arrays whose length is a multiple of a chunk size.

This is a limitation of Obsidian and it should provide a performance advantage

at those sizes it does support, since some degree of dynamic control flow can be

avoided.

In Harris (2007), reduction is optimised incrementally leading to seven different

kernels. In the end, a speedup of ≈30 times is obtained in comparison to the original

naive reduction kernel. The steps taken to optimise the reduction kernel in CUDA

are not directly comparable to our case study on reduction kernels. In Harris (2007),

unrolling is applied as step 5 and 6, while unrolling is the default for all the reduction

kernels implemented using Obsidian (except for loops introduced explicitly with

seqReduce or resulting from virtualisation). In Harris (2007), two different kinds of

kernel optimisations are considered, algorithmic optimisation and code optimisations.

Algorithmic optimisations refer to changes of memory access pattern and amount of
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work per thread and code optimisations include transformations like loop unrolling.

In the NVIDIA reduction example, algorithmic optimisation gave greater payoff

than code optimisation (roughly 12 times versus 2.5).

Finding the corresponding speedup values for the Obsidian case studies is difficult,

because some optimisations are difficult to classify and because virtualisation can

introduce loops implicitly. Which values would we compare? Table 4 shows the

running time for reduction of 16 million elements; for red1 the best found parameter

settings are 2.5 times faster than the worst. Comparing the worst parameter setting

for red4 with the best parameter setting for red7 shows a 6.2 times speedup. The

greatest speedup obtained by tuning over the parameters alone is found for red7; it

shows a difference of 3.2 times. If comparing the speedup as we apply optimisations

from red1 to red7, then only a 1.7 times speedup is obtained. But since the fastest

variant of red1 implicitly applies sequentialisation (via thread/block virtualisation)

for its best performing parameter settings, it is not the same comparison, as in

Harris (2007), between a naive reduction kernel and an optimised one.

After tuning the parameters, the Obsidian code performs on par with or slightly

better than Thrust and Accelerate. The generated reduction kernels are all very

fast, obtaining a throughput ranging from ≈110 GB/s (Thrust) up to ≈142 GB/s

(Obsidian red7) on the GTX 680 with a memory bandwidth of 192 GB/s.

For scan on large input arrays, Obsidian and Thrust are equally matched, while

Accelerate lags somewhat. We conjecture that the Accelerate performance could be

improved by complicating the CUDA code used to implement the scan skeleton.

From the benchmark results, it is clear that being able to easily generate variants

and tune over parameter settings is valuable. In Obsidian, the user has fine control

over how a computation is divided up into parallel and sequential parts. The resulting

ease of exploring the design space for a kernel by making syntactically small changes

that radically change the behaviour of the generated code (for example, to adjust

memory access patterns), while retaining a high-level description, is the main benefit

of Obsidian over Thrust and Accelerate.

9 Related work

There are many languages and libraries for GPU programming. Starting at the low-

level end of the spectrum we have CUDA (NVIDIA, 2015a). CUDA is NVIDIA’s

name for the programming model and extended C language for their GPUs. It is

the capabilities of CUDA that we seek to match with Obsidian, while giving the

programmer the benefits of having Haskell as a meta-programming language.

While remaining in the imperative world, but going all the way to the other end of

the high-level–low-level spectrum, we have the NVIDIA Thrust Library (NVIDIA,

2015c). Thrust offers a programming model where details of the GPU architecture

are completely abstracted away. Here, the programmer expresses algorithms using

building blocks, such as: Sort, Scan and Reduce. Thrust is designed to be agnostic of

any particular parallel framework (CUDA, OpenMP, Sequential CPU, etc.). It has

a CUDA backend, but does not explicitly expose CUDA-specific details. Difficulties

in maintaining and developing high performance kernels for use in Thrust led to the



A language for hierarchical data parallel design-space exploration on GPUs 47

development of a lower level library called CUB (NVIDIA, 2015b), specifically for

CUDA C++, and providing generic, reusable block-wide primitives. CUB is lower

level than Thrust, and the two libraries can be used together. CUB and Obsidian

work at similar levels of abstraction and have similar aims, we believe. It would

be interesting to find out more about how CUB is being used by practitioners, but

there does not yet seem to be a publication on this topic.

Accelerate is a language embedded in Haskell for GPU programming

(Chakravarty et al., 2011). The abstraction level is comparable to that of Thrust. In

other words, Accelerate hides most GPU details from the programmer. Accelerate

provides a set of operations (that are parallel and suitable for GPU execution, much

like in Thrust) implemented as skeletons. Recent work has permitted the optimisation

of Accelerate programs using fusion techniques to decrease the number of kernel

invocations needed (see McDonell et al. (2013)). It seems to us that when using

Accelerate, the programmer has no control over how to decompose a computation

onto the GPU or how to make use of shared memory resources. For many users,

remaining entirely within Haskell will be a big attraction of Accelerate.

The version of Obsidian described here does not try to use any compiler

optimisation techniques. Instead, we are expecting that the CUDA compiler will

apply a good set of techniques, from common subexpression elimination to more

GPU specific transformations. The intention is to leave all important decisions in

the hands of the programmer. Another option is to try to build knowledge of GPU-

related trade-offs into the compiler, making it more clever, and removing fine control

from the programmer. This option was explored as part of a masters thesis project

at Chalmers (Ulvinge, 2014). This approach results in a system in which many

decisions are taken by the compiler. Ulvinge’s work explored the use of standard

compiler optimisations like loop tiling, and of program analyses to guide choices of

memory access patterns. It would be interesting to further explore this approach,

to find a sweet spot between full programmer control and (possibly mystifying)

compiler optimisations.

Nikola (Mainland & Morrisett, 2010) is another language embedded in Haskell

that occupies the same place as Accelerate and Thrust on the abstraction level

spectrum. The systems above are all for flat data-parallelism, while Bergstrom and

Reppy are attempting to implement nested data-parallelism in a compiler for the

NESL language for GPUs (Bergstrom & Reppy, 2012).

The Copperhead (Catanzaro et al., 2011) system compiles a subset of Python to

run on GPUs. Much like other languages mentioned here, Copperhead identifies

certain parallel primitives that can be executed in parallel on the GPU (such as

reduce, scan and map). But Copperhead also allows the expression of nested data-

parallelism and is thus different from both Accelerate and Obsidian.

Oancea et al. use manual transformations to study a set of compiler optimisations

for generating efficient GPU code from high-level and functional programs based

on map, reduce and scan (Oancea et al., 2012). They tackle performance problems

related to GPU programming, such as bad memory access patterns and diverging

branches. The Loo.py system (Kloeckner, 2015) takes a transformation-based

approach to achieving performance, portability and productivity even further. It
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provides a mechanism for user-controlled transformation of array programs, to

make them more suited to data-parallel architectures such as GPUs. Both programs

written specifically for Loo.py and in other languages (such as Fortran) can be

transformed in this way, from Python. One possibility might be to explore the use

of Loo.py as a backend for a Haskell-based higher level language.

10 Discussion

Our work on Obsidian investigates whether the benefits of functional programming

can be brought to GPU kernel programmers who wish to explore a variety of possible

designs in the search for high performance. Achieving high performance typically

involves choosing a good algorithm that decomposes in a way that matches the

structure of the GPU. The subparts will likely be individual kernels and the kernel

implementor must decide on the function and memory access pattern (including

input size) of each subpart. Often, it makes sense to try many different arrangements

of the parts in a design exploration and parameter tuning phase. In CUDA, an

important part of what the programmer expresses is the behaviour of a single

thread—how it decides what data to access based on its identity, what operations it

does on that data, where it places intermediate and final results. Obsidian programs

must encode the same information, but do so by expressing the behaviour of the

entire program (and how it operates on arrays) rather than by considering a single

thread that will be launched many times. Because one typically expresses functions

on arrays using familiar higher order functions like map or zipWith, rather than

using indexing, this in itself removes a large burden of index manipulation from the

programmer.

We find that Obsidian does indeed bring the benefits of functional programming

to the process of writing CUDA kernels. Obsidian programming gives the kind of

fine control that CUDA does, while at the same time providing abstractions that

remove some of the tedium, particularly index calculations, and ease the search

for high performance solutions. Our case studies demonstrate both the process of

finding high performance solutions and the fact that the resulting kernels do indeed

have performance comparable to NVIDIA’s own Thrust library.

Some of the standard benefits of functional programming come into play when

one uses Obsidian. Parameterisation eases the exploration of several possible im-

plementations, as demonstrated in the case studies. Polymorphism makes it easy to

change the type of a generated kernel with a tiny edit. These are run of the mill

benefits, but they are actually important in our code generating DSL, and we feel

that they should not be forgotten. And perhaps even higher order functions that

capture common idioms, in this case of array programming, should be counted here.

The “wrapping” of kernels to form carry chains in the large scan example is a classic

example of something that is easy to do in a functional language, and much harder

to do in a less expressive language.

Generating high performance CUDA code is a complex task, riddled with pitfalls.

We have succeeded in doing so, while keeping the kernel specifications in Obsidian

reasonably concise, through the combination of a variety of ideas. The hierarchy
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types (for thread, warp, block and grid) allow the same array function to be compiled

in different ways, again easing the burden on the programmer. Push arrays provide

a novel abstraction, overcoming some of the weaknesses of the much more standard

pull (or delayed) arrays, while also guaranteeing fusion. Pull arrays are easy to

understand and it is straightforward to implement the standard library functions

(such as map, zip, zipWith and permutations) on them. Push arrays are harder

to grasp, but they offer fine control to the programmer. Without them, we would

not have been able to achieve satisfactory performance of generated kernels. One

might wonder why we don’t just give the programmer pull arrays and use program

transformations to produce good loop structures whenever possible. Our choice

has been to leave the programmer completely and firmly in control. There are no

surprises.

The ease of writing functions like coalesce that control memory access patterns

is also of central importance, especially when combined with the assistance that

Obsidian provides in the layout management of CUDA shared memory arrays. The

idea of virtualisation as a way to hide hardware-related constraints (such as number

of threads per block) from the user is simple. But it is actually quite hard to convey

what a relief it is to the user! Each such easing of the programmer’s burden frees up

intellectual capacity for the quest for high performance. A final part of the puzzle is

the escape hatch to lower level programming that Obsidian provides.

The net effect is that Obsidian is now (finally) a good vehicle for those who

wish to produce high performance CUDA code, enabling both fine control of the

generated code and easing the necessary parameter tuning (Svensson et al., 2014).

The capabilities of the GPU are changing and evolving. For example, it is now

possible to do warp-local computations that exchange values between threads using

a set of shuffle instructions. These kernels do not need to use shared memory

to the same extent as the ones we generate. It would be interesting to try to

incorporate these capabilities into Obsidian, especially since we already have the

warp abstraction.

The programming idioms used in the large scan example, including the “wrapping”

of kernels to make carry chains between them, are suggestive of some more

general constructs. It would be interesting to explore a layer above Obsidian that

documents and encodes as combinators many standard constructions in GPU kernel

programming.

11 Conclusion

Obsidian lends itself well to the kind of experimentation with low-level GPU details

that results in the generation of efficient kernels. This prototyping aspect is illustrated

in Section 6.2. The case studies also show how programmers can compose kernels

and thus reuse prior effort.

The use of GPU-hierarchy generic functions makes the kernel code concise. The

hierarchy generic and specific functions provide an easy way to control placement

of computation onto levels of the hierarchy. The typing-design used to model the
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GPU hierarchy also rules out many programs that we cannot efficiently compile to

the GPU.

While other approaches to GPU programming in higher level languages deliber-

ately abstract away from the details of the GPU, we persist in our aim at exposing

architectural details of the machine and giving the programmer fine control. This

is partly because trying to provide simple programming idioms that permit control

of low-level details relating to fine details of the GPU is an interesting challenge.

More importantly, we are fascinated by the problem of how to assist programmers

in making the subtle algorithmic decisions needed to program parallel machines

with programmer controlled memory hierarchies, and exotic constraints on memory

access patterns. This problem is by no means confined to GPUs, and it is both

difficult and pressing.
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Appendix A. Accelerate performance numbers

Measuring performance of Accelerate programs turned out not to be easy. Running

an Accelerate computation is done using a function called run; this function exposes

a pure interface (using unsafePerformIO internally) and its operational behaviour

on each invocation varies. For example, the first time an Accelerate program is run,

the CUDA compiler, nvcc, may be invoked to compile the skeletons used by that

program (or it may hit a cache on disk), taking up to around two seconds. It is

also difficult to reason about exactly when copying data to and from a device takes

place.

In the sections above, Obsidian and Thrust reduction and scan implementations

are compared to Accelerate where the measurement of interest is running time on

the GPU—compilation and data transfer excluded. To obtain these numbers for

Accelerate, we used the NVIDIA profiler (nvprof).

For Obsidian and Thrust, each reduction and scan is run 1,000 times and the

total time that took on the GPU is reported. This approach was chosen in order to

get representative performance numbers in an average case. Trying to do the same
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in Accelerate led to two issues. Running the program repeatedly on the same array

had the effect that the program was run only once and the result shared. Running

the program on 1,000 different arrays hit a problem with current Accelerate memory

management, where old arrays were not freed on the GPU and ended up filling

the device memory. Because of these issues, the Accelerate numbers are obtained by

running a smaller number of iterations and the running time for 1,000 iterations is

extrapolated.


