Parallel Functional Programming Data Parallelism

Mary Sheeran

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism

Introduce parallel data structures and make operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language) (Blelloch)

concise (good for specification, prototyping)

allows programming in familiar style (but still gives parallelism)

allows nested parallelism (as distinct from flat)

associated language-based cost model

gave decent speedups on wide-vector parallel machines of the day

Hugely influential!

http://www.cs.cmu.edu/~scandal/nesl.html

Parallelism without concurrency!

Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors, barriers, or even futures, at source level

Based on Blelloch's thesis work: <u>Vector Models for Data-Parallel</u> <u>Computing, MIT Press 1990</u>

NESL is a sugared typed lambda calculus with a set of array primitives and an explicit parallel map over arrays

To be useful for analyzing parallel algorithms, NESL was designed with rules for calculating the work (the total number of operations executed) and depth (the longest chain of sequential dependence) of a computation.

For modeling the cost of NESL we augment a standard call by value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation and a measure of the space taken by a sequential implementation. We show that a NESL program with w work (nodes in the DAG) d depth (levels in the DAG) and s sequential space can be implemented on a p processor butterfly network, hypercube or CRCW PRAM using $O(w/p + d \log p)$ time and O (s + dp log p) reachable space. For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

Quotes are from ICFP'96 paper

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner Carnegie Mellon University {blelloch,jdg}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ -calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation, and a measure of the space taken by a sequential implementation. We show that a NESL program with w work (nodes in the DAG), d depth (levels in the DAG), and s sequential space can be implemented on a p processor butterfly network, hypercube, or CRCW PRAM using $O(w/p + d \log p)$ time and $O(s + dp \log p)$ reachable space.¹ For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ -calculus using both call-by-value [3] and speculative parallelism [18]. These results accounted for work and depth of a computation using a profiling semantics [29, 30] and then related work and depth to running time on various machine models.

This paper applies these ideas to the language NESL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ -calculus without arrays (the simulation of an array of length *n* using recursive types requires a $\Omega(\log n)$ slowdown). Second, it augments the profiling semantics with

Quotes

This paper adds the accounting of costs to the semantics of the language and proves a mapping of those costs into running time / space on concrete machine models

A Provable Time and Space Efficient Implementation of NESL

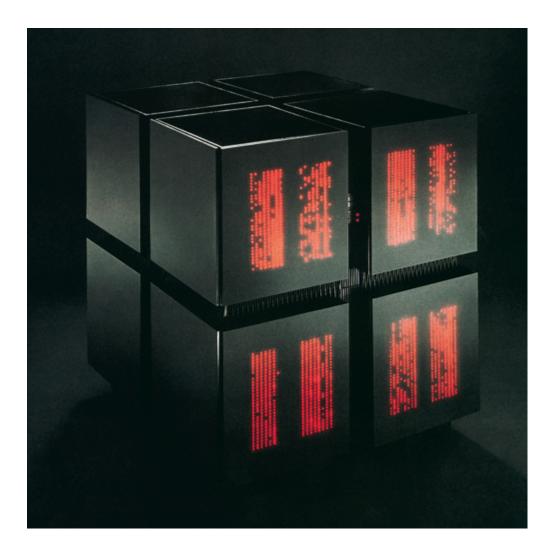
Guy E. Blelloch and John Greiner Carnegie Mellon University {blelloch,jdg}@cs.cmu.edu

Abstract

In this paper we prove time and space bounds for the implementation of the programming language NESL on various parallel machine models. NESL is a sugared typed λ -calculus with a set of array primitives and an explicit parallel map over arrays. Our results extend previous work on provable implementation bounds for functional languages by considering space and by including arrays. For modeling the cost of NESL we augment a standard call-by-value operational semantics to return two cost measures: a DAG representing the sequential dependences in the computation, and a measure of the space taken by a sequential implementation. We show that a NESL program with w work (nodes in the DAG), d depth (levels in the DAG), and s sequential space can be implemented on a p processor butterfly network, hypercube, or CRCW PRAM using $O(w/p + d \log p)$ time and $O(s + dp \log p)$ reachable space.¹ For programs with sufficient parallelism these bounds are optimal in that they give linear speedup and use space within a constant factor of the sequential space.

The idea of a provably efficient implementation is to add to the semantics of the language an accounting of costs, and then to prove a mapping of these costs into running time and/or space of the implementation on concrete machine models (or possibly to costs in other languages). The motivation is to assure that the costs of a program are well defined and to make guarantees about the performance of the implementation. In previous work we have studied provably time efficient parallel implementations of the λ -calculus using both call-by-value [3] and speculative parallelism [18]. These results accounted for work and depth of a computation using a profiling semantics [29, 30] and then related work and depth to running time on various machine models.

This paper applies these ideas to the language NESL and extends the work in two ways. First, it includes sequences (arrays) as a primitive data type and accounts for them in both the cost semantics and the implementation. This is motivated by the fact that arrays cannot be simulated efficiently in the λ -calculus without arrays (the simulation of an array of length *n* using recursive types requires a $\Omega(\log n)$ slowdown). Second, it augments the profiling semantics with



Connection Machine

First commercial massively parallel machine

65k processors

can see CM-1 and CM-5 (from 1993) at Computer History Museum, Mountain View

Image: © Thinking Machines Corporation, 1986. Photo: Steve Grohe.

http://www.inc.com/magazine/19950915/2622.html

Hypercube

NESL array operations

function factorial(n) =
 if (n <= 1) then 1
 else n*factorial(n-1);</pre>

{factorial(i) : i in [3, 1, 7]};

apply to each = parallel map (works with user-defined functions => load balancing)

list comprehension style notation

Online interpreter 😳

The result of: function factorial(n) =

if (n <= 1) then 1 else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

is:

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

apply to each (multiple sequencs)

The result of:

{a + b : a in [3, -4, -9]; b in [1, 2, 3]}; is:

it = [4, -2, -6] : [int]

Bye.

apply to each (multiple sequencs)

The result of:

```
{a + b : a in [3, -4, -9]; b in [1, 2, 3]};
is:
```

```
it = [4, -2, -6] : [int]
```

Bye.

Qualifiers in comprehensions are zipping rather than nested as in Haskell Prelude> [a + b | a <- [3,-4,-9], b <- [1,2,3]] [4,5,6,-3,-2,-1,-8,-7,-6]

Filtering too

The result of:

{a * a : a in [3, -4, -9, 5] | a > 0};

is:

it = [9, 25] : [int]

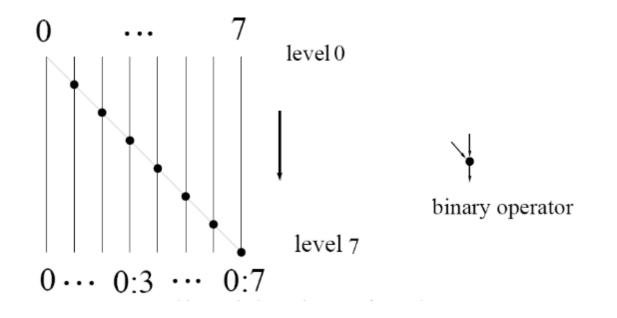
Bye

scan (Haskell first)

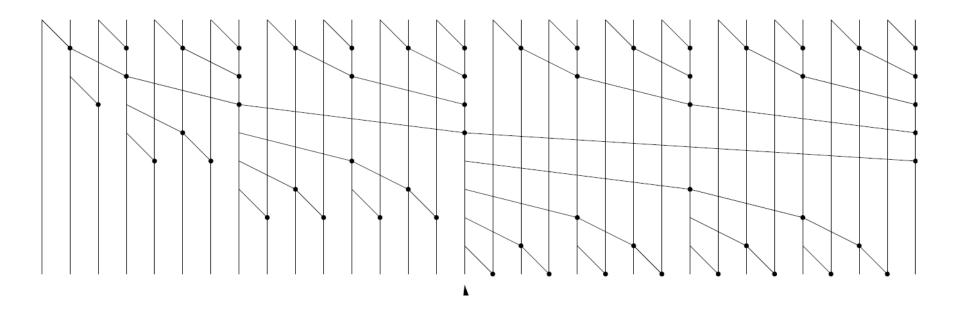
*Main> scanl1 (+) [1..10] [1,3,6,10,15,21,28,36,45,55]

Main> scanl1 () [1..10] [1,2,6,24,120,720,5040,40320,362880,3628800]

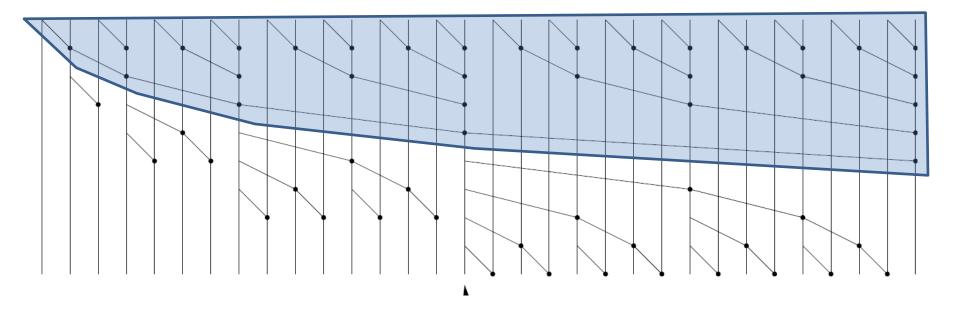
scan diagram



Brent Kung ('79)

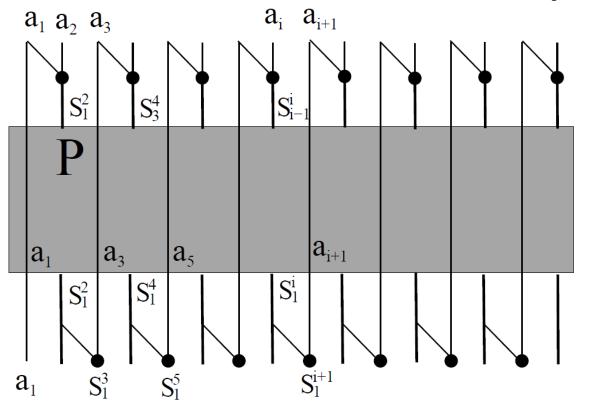


Brent Kung



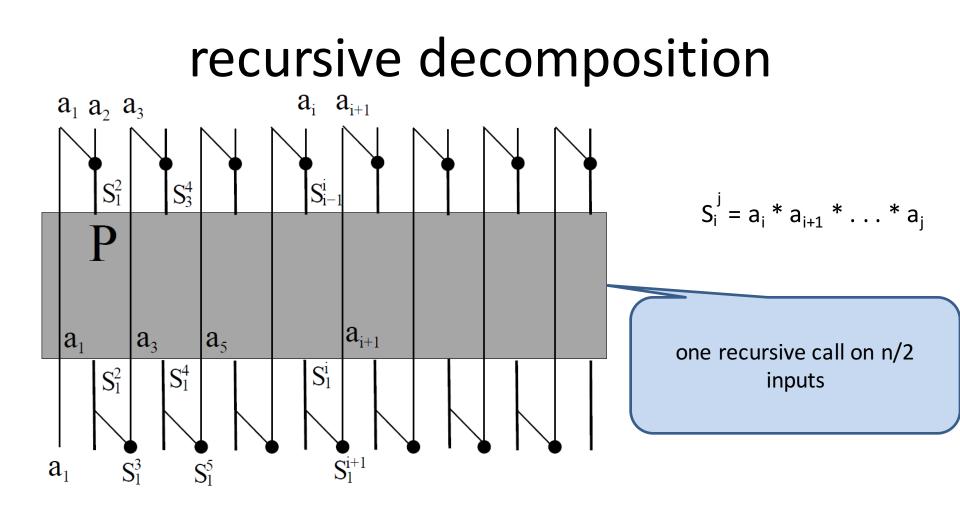
forward tree + several reverse trees

recursive decomposition



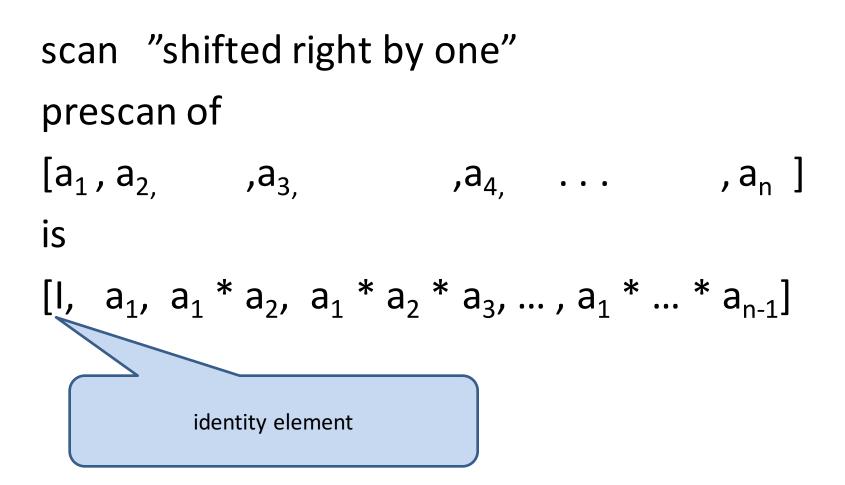
$$S_i^{J} = a_i^{*} a_{i+1}^{*} \dots^{*} a_i$$

indices from 1 here

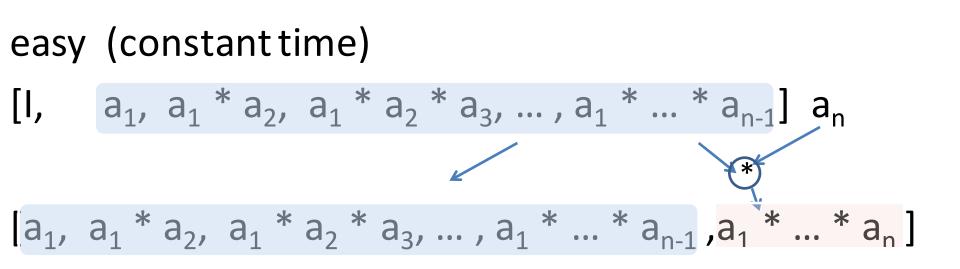


divide conquer combine

prescan



scan from prescan



the power of scan

Blelloch pointed out that once you have scan

you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy" should appear before "stratification" in a dictionary

To evaluate polynomials

To solve recurrences. For example, to solve the recurrences

$$x_i = a_i x_{i-1} + b_i x_{i-2}$$
 and $x_i = a_i + b_i / x_{i-1}$

To implement radix sort

To implement quicksort

To solve tridiagonal linear systems

To delete marked elements from an array

To dynamically allocate processors

To perform lexical analysis. For example, to parse a program into tokens

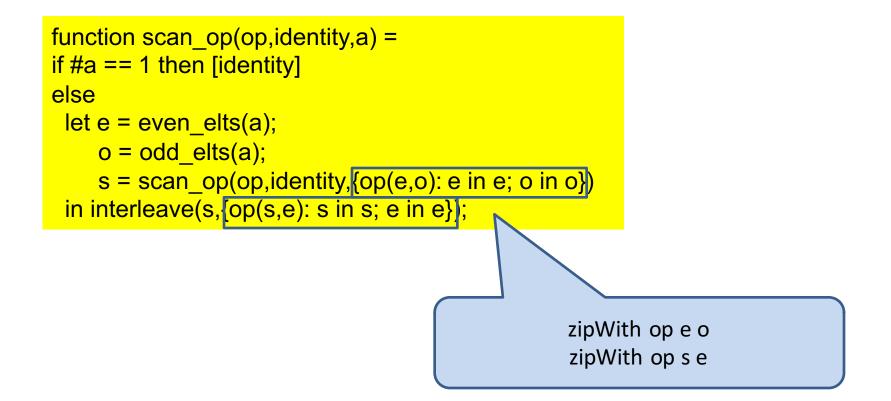
and many more

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/ieee-scan.ps.gz

prescan in NESL

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
    o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
in interleave(s,{op(s,e): s in s; e in e});
```

prescan in NESL



prescan

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
    o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
in interleave(s,{op(s,e): s in s; e in e});
```

```
scan_op('+, 0, [2, 8, 3, -4, 1, 9, -2, 7]);
```

```
is:
```

```
scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)
```

```
it = [0, 2, 10, 13, 9, 10, 19, 17] : [int]
```

prescan

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
    o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
in interleave(s,{op(s,e): s in s; e in e});
```

```
scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);
```

is:

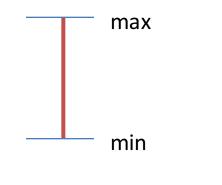
scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]

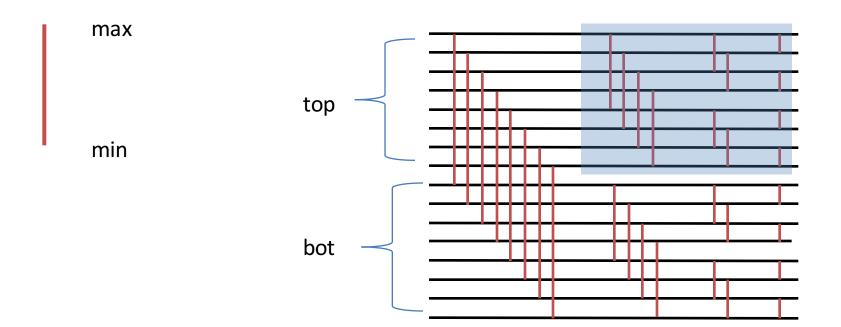
Batcher's bitonic merge

```
function bitonic_sort(a) =
if (#a == 1) then a
else
    let
        bot = subseq(a,0,#a/2);
        top = subseq(a,#a/2,#a);
        mins = {min(bot,top):bot;top};
        maxs = {max(bot,top):bot;top};
        in flatten({bitonic_sort(x) : x in [mins,maxs]});
```

bitonic_sort (merger)



bitonic_sort (merger)

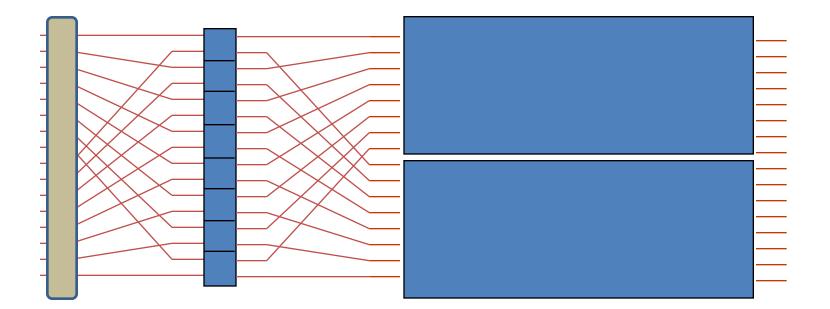


bitonic sequence

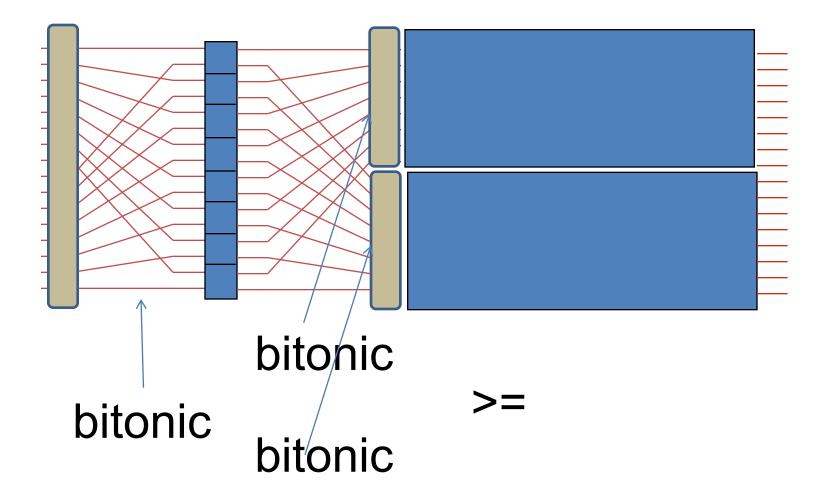
inc (not decreasing) then dec (not increasing)

or a cyclic shift of such a sequence

Butterfly



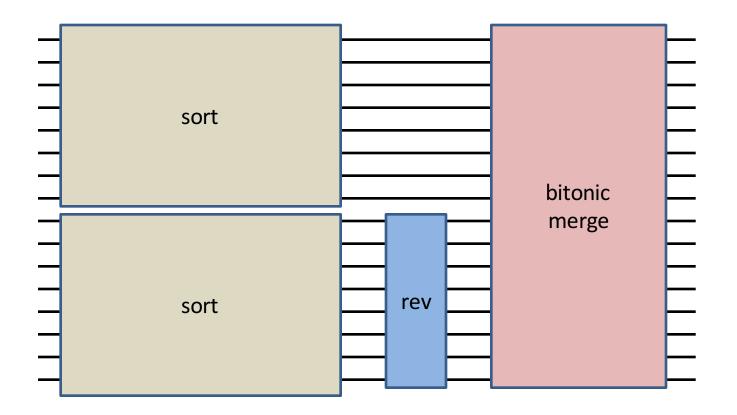
Butterfly



Now use Divide and Conquer (again) to do sorting

How??

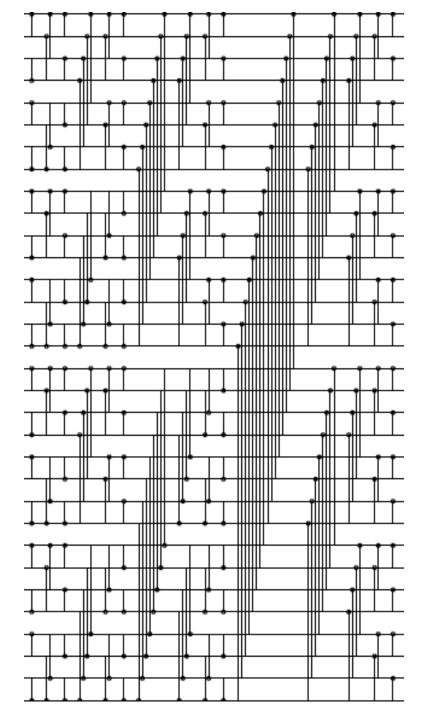
bitonic sort

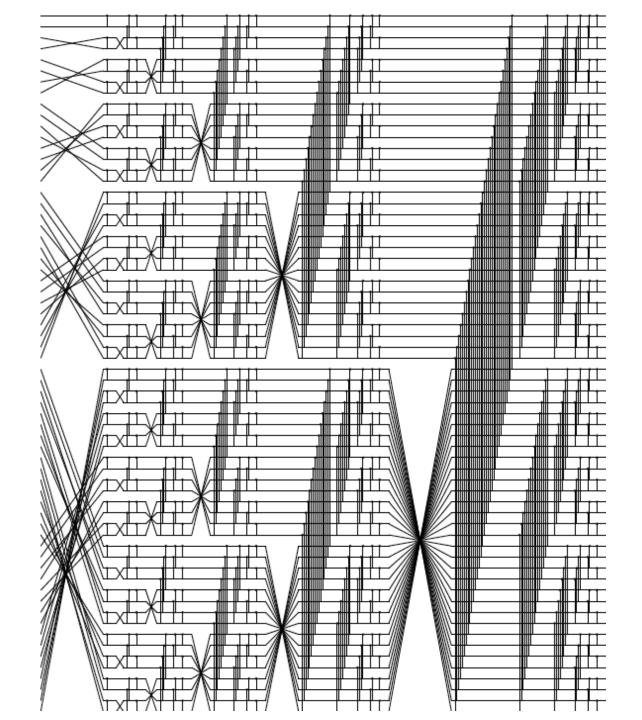


http://www.cs.kent.edu/~batcher/sort.pdf

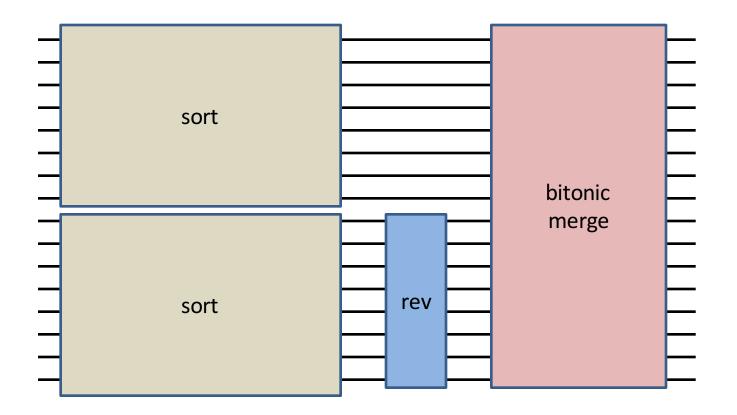
bitonic sort

```
function batcher_sort(a) =
if (#a == 1) then a
else
    let b = {batcher_sort(x) : x in bottop(a)};
    in bitonic_sort(b[0]++reverse(b[1]));
```





bitonic sort



http://www.cs.kent.edu/~batcher/sort.pdf

bitonic sort

Read Batcher's paper from 1968 It is a classic! (2520 citations on GS)

http://www.cs.kent.edu/~batcher/sort.pdf

Quicksort

function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];

For each index, return the index of the matching parenthesis

```
function parentheses_match(string) =
let
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

permute([7,8,9],[2,1,0]); permute([7,8,9],[1,2,0]);

For each index, return the in

it = [9, 8, 7] : [int]

function parentheses_match(let

it = [9, 7, 8] : [int]

depth = plus_scan({if c==`(then 1 else -1 : c in string}); depth = {d + (if c==`(then 1 else 0): c in string; d in depth}; rnk = permute([0:#string], rank(depth)); ret = interleave(odd_elts(rnk), even_elts(rnk)) in permute(ret, rnk);

rank([6,8,9,7]);

it = [0, 2, 3, 1] : [int]

For each index, return the in

function parentheses_match(let

depth = plus scan({if c==`(

depth = $\{d + (if c =) \in I_{\mathcal{A}} \}$

rank([6,8,9,7,9]);

it = [0, 2, 3, 1, 4] : [int]

rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

For each index, return the index of the matching pa

A "step through" of this function is provided at end of these slides

```
function parentheses_match(string) =
let
   depth = plus_scan({if c==`( then 1 else -1 : c in string});
   depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
   rnk = permute([0:#string], rank(depth));
   ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

What does Nested mean??

sequence of sequences apply to each of a PARALLEL function

{plus scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

What does Nested mean??

sequence of sequences apply to each of a PARALLEL function

{plus scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

Implemented using Blelloch's Flattening Transformation, which converts nested parallelism into flat. Brilliant idea, challenging to make work in fancier languages (see DPH and good work on Manticore (ML))

What does Nested mean?? Another example

function svxv (sv, v) =
sum ({x * v[i] : (x, i) in sv});

function smxv (sm, v) =
{ svxv(row, v) : row in sm }

Nested Parallelism

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel tasks except at join points => a task can only sync with its parent (sometimes called fully strict)

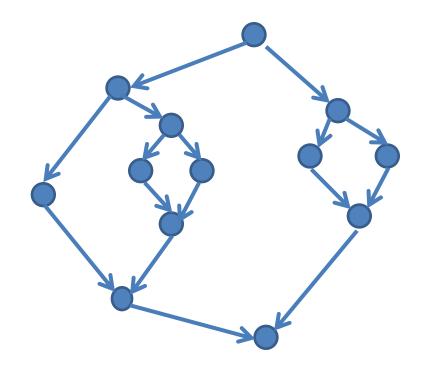
Deterministic (in absence of race conditions)

Advantages:

Good schedulers are known Easy to understand, debug, and analyze

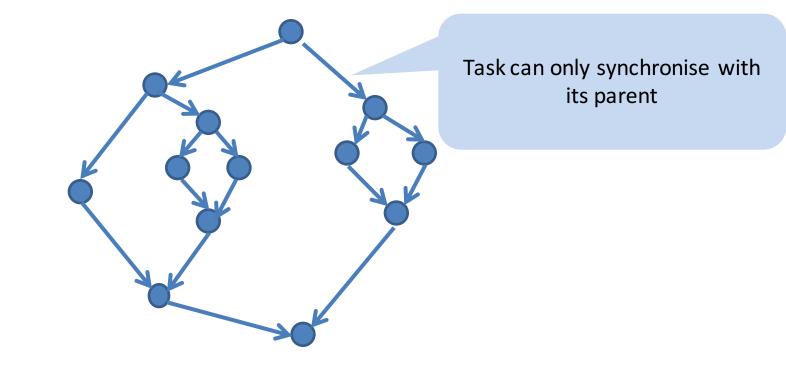
Nested Parallelism

Dependence graph is series-parallel

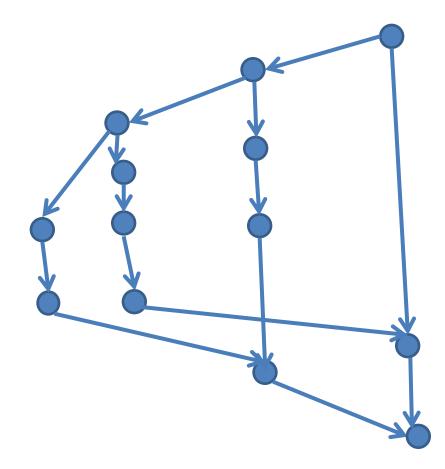


Nested Parallelism

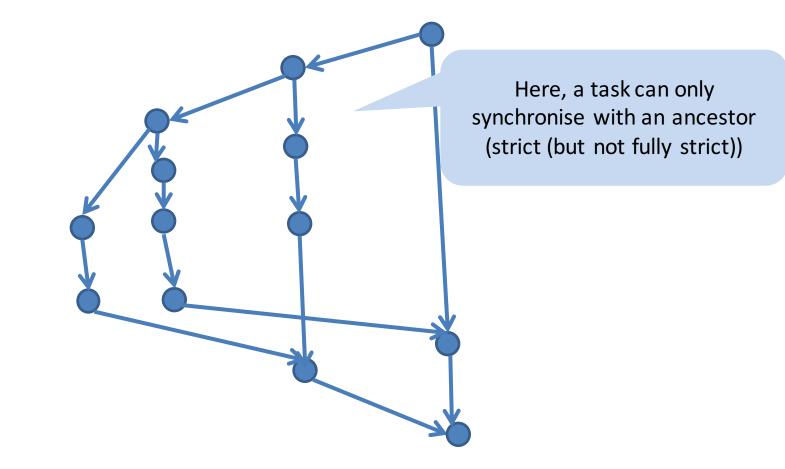
Dependence graph is series-parallel



But not



But not



Back to examples

this prescan is actually flat

```
function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
    o = odd_elts(a);
    s = scan_op(op,identity,{op(e,o): e in e; o in o})
in interleave(s,{op(s,e): s in s; e in e});
```

Back to examples Batcher's bitonic merge IS NESTED

```
function bitonic_sort(a) =
if (#a == 1) then a
else
    let
        bot = subseq(a,0,#a/2);
        top = subseq(a,#a/2,#a);
        mins = {min(bot,top):bot;top};
        maxs = {max(bot,top):bot;top};
        in flatten({bitonic_sort(x) : x in [mins,maxs]});
```

and so is the sort

Back to examples Batcher's bitonic merge IS NESTED

```
function bitonic_sort(a) =
if (#a == 1) then a
else
    let
        bot = subseq(a,0,#a/2);
        top = subseq(a,#a/2,#a);
        mins = {min(bot,top):bot;top};
        maxs = {max(bot,top):bot;top};
        in flatten({bitonic_sort(x) : x in [mins,maxs]});
```

nestedness is good for D&C and for irregular computations

and so is the sort

Back to examples parentheses matching is FLAT

For each index, return the index of the matching parenthesis

```
function parentheses_match(string) =
let
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

What about a cost model?

Blelloch empasises

- 1) work : total number of operations represents total cost (integral of needed resources over time = running time on one processor)
- 2) depth or span: longest chain of sequential dependencies best possible running time on an unlimited number of processors

claims:

- 1) easier to think about algorithms based on work and depth than to use running time on machine with P processors (e.g. PRAM)
- 2) work and depth predict running time on various different machines (at least in the abstract)

work

on a sequential machine = sequential time

but can maybe be shared among multiple processors

Work w

on a sequential machine = sequential time

but can maybe be shared among multiple processors

Evenly shared work on #proc processors would take (about) w/#proc time

Work w

on a sequential machine = sequential time

but can maybe be shared among multiple processors

Evenly shared work on #proc processors would take (about) w/#proc time perfect speedup

Span s

(or depth)

Allows analysis of extent to which work can be shared among processors

Span s

(or depth)

Allows analysis of extent to which work can be shared among processors

without resorting to details of machines, and how work is distributed over processors

scheduler

Assume a "reasonable" scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do

scheduler

Assume a "reasonable" scheduler

A greedy scheduler guarantees that no processor will be idle (= not working on part of the computation) if there is work remaining to do

Then runtime <= (work / #proc) + span

runtime <= (work / #proc) + span</pre>

If the first term dominates, then we are getting near perfect speedup (within a factor of 2)

Define

Parallelism = work / span

Number of processors for which the two terms are equal Gives rough upper bound on number of processors can use effectively Part 1: simple language based performance model

Call-by-value λ -calculus

$$\frac{e_1 \Downarrow \lambda x. e \quad e_2 \Downarrow v \quad e[v/x] \Downarrow v'}{e_1 e_2 \Downarrow v'}$$
(APP)

slide from Blelloch's ICFP10 invited talk

The Parallel λ-calculus: cost model

 $e \Downarrow v; w, d$

Reads: expression *e* evaluates to *v* with work *w* and span *d*.

- Work (W): sequential work
- <u>Span</u> (D): parallel depth

slide from Blelloch's ICFP10 invited talk

The Parallel λ -calculus: cost model $\lambda x.e \downarrow \lambda x.e; 1,1$ (LAM) $\frac{e_1 \Downarrow \lambda x. e; w_1 d_1}{e_1 e_2 \Downarrow v; w_2 d_2} \frac{e[v/x] \Downarrow v'; w_3 d_3}{e_1 e_2 \Downarrow v'; 1 + w_1 + w_2 + w_3} = \frac{e[v/x] \Downarrow v'; w_3 d_3}{1 + \max(d_1, d_2) + d_3}$ (APP) Work adds $e_1 \Downarrow \lambda x.e$ $e_2 \Downarrow \mathbf{v}$ Span adds sequentially, d and max in parallel e[v/x]

slide from Blelloch's ICFP10 invited talk

The Parallel λ -calculus cost model $\lambda x. e \parallel \lambda x. e; 1.1$ (LAM) $\frac{e_1 \Downarrow \lambda x. e; w_1, d_1 \quad e_2 \Downarrow v; w_2, d_2 \quad e[v/x] \Downarrow v'; w_3, d_3}{e_1 e_2 \Downarrow v'; 1 + w_1 + w_2 + w_3, 1 + \max(d_1, d_2) + d_3}$ (APP) $c \downarrow c; 1.1$ (CONST) $\frac{e_1 \Downarrow c; w_1, d_1 \quad e_2 \Downarrow v; w_2, d_2 \quad \delta(c, v) \Downarrow v'}{e_1 e_2 \Downarrow v'; 1 + w_1 + w_2, 1 + \max(d_1, d_2)} \quad (\text{APPC})$ $c_n = 0, \dots, n, +, +_0, \dots, +_n, <, <_0, \dots, <_n, \times, \times_0, \dots, \times_n, \dots$ (constants)

Adding Functional Arrays: NESL $\{e_{1}: x \text{ in } e_{2} \mid e_{3}\}$ $\frac{e'[v_{i}/x] \Downarrow v_{i}'; w_{i}, d_{i} \quad i \in \{1...n\}}{\{e': x \text{ in } [v_{1}...v_{n}]\} \Downarrow [v_{1}'...v_{n}']; 1 + \sum_{i=1}^{n} w_{i}, 1 + \max_{i=1}^{|v|} d_{i}}$ Primitives: <- : 'a seq * (int, 'a) seq -> 'a seq • [g,c,a,p] <- [(0,d), (2,f), (0,i)] [i,c,f,p]

[ICFP95]

elt, index, length

Adding Functional Arrays: NESL

 $\{e_1 : x \text{ in } e_2 \mid e_3\}$

Blelloch:

programming based cost models could change the way people think about costs and open door for other kinds of abstract costs doing it in terms of machines.... "that's so last century"

<- : `a seq * (int,'a) seq -> `a seq

[ICFP95]

elt, index, length

The Second Half: Provable Implementation Bounds

Theorem [FPCA95]: If $e \Downarrow v$; w,d then v can be calculated from e on a CREW PRAM with p processors in $o\left(\frac{w}{p} + d\log p\right)$ time.

Can't really do better than: $max\left(\frac{w}{p}, d\right)$ If w/p > d log p then "work dominates" We refer to w/_d as the parallelism.

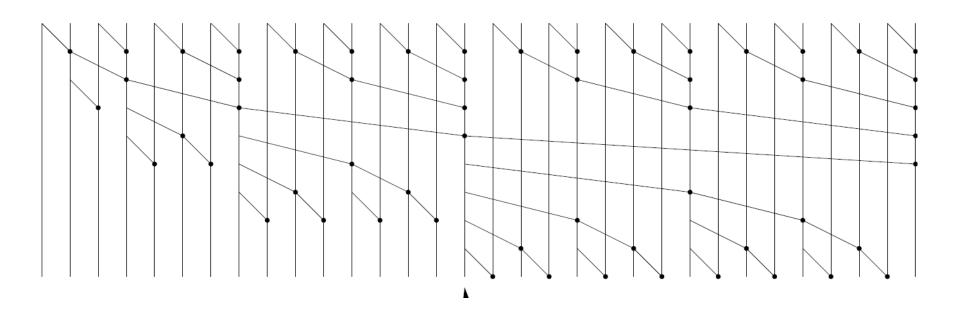
(Typo fixed by MS based on the video)

Brent's lemma

If a computation can be performed in t steps with q operations on a parallel computer (formally, a PRAM) with an unbounded number of processors, then the computation can be performed in t + (q-t)/p steps with p processors

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Back to our scan



oblivious or data independent computation

N = 2ⁿ inputs, work of dot is 1 work = ? depth = ?

and bitonic sort?

Quicksort

function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives

depth = $O(\log N)$ work = $O(N \log N)$

Quicksort

function Quicksort(A) = if (#A < 2) then A else
 let pivot = A[#A/2];
 lesser = {e in A| e < pivot};
 equal = {e in A| e == pivot};
 greater = {e in A| e > pivot};
 result = {quicksort(v): v in [lesser,greater]};
 in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

(The depth is improved over the example with trees, due to the addition of parallel arrays as primitive.)

From the NESL quick reference

Basic Seq	uence Functions		
Basic Ope	erations Description	Work	Depth
#a	O(1)	O(1)	
a[i]	ith element of a	O(1)	O(1)
dist(a,n)	Create sequence of length n with a in each element.	O(n)	O(1)
zip(a <i>,</i> b)	Elementwise zip two sequences together into a sequence of pairs	. O(n)	O(1)
[s:e]	Create sequence of integers from s to e (not inclusive of e)	O(e-s)	O(1)
[s:e:d]	Same as [s:e] but with a stride d.	O((e-s)/c	l)O(1)
Scans			
plus_scar	(a) Execute a scan on a using the + operator	O(n)	O(log n)
min_scan	(a) Execute a scan on a using the minimum operator	O(n)	O(log n)
max_scar	n(a) Execute a scan on a using the maximum operator	O(n)	O(log n)
or_scan(a) Execute a scan on a using the or operator	O(n)	O(log n)
and_scan	(a) Execute a scan on a using the and operator	O(n)	O(log n)

NESL : what more should be done?

Take account of LOCALITY of data and account for communication costs (Blelloch has been working on this.)

Deal with exceptions and randomness

Data Parallel Haskell (DPH) intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited. Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used functional programming language, namely Haskell, and implement them in a state-of-theart Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types, was focused entirely on nested data parallelism, and its implementation is an interpreter. Haskell is a higher-order language with an extremely rich type system; it already includes several other sorts of parallel execution; and its implementation is a compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

NESL also influenced

Intel Array Building Blocks (ArBB)

That has been retired, but ideas are reappearing as C/C++ extensions

Collections seems to encourage a functional style even in non functional languages (remember Backus' paper from first lecture)

Summary

Programming-based cost models are (according to Blelloch) MUCH BETTER than machine-based models

They open the door to other kinds of abstract costs than just work, depth, space ...

There is fun to be had with parallel functional algorithms (especially as the Algorithms community is still struggling to agree on useful models for use In analysing parallel algorithms).

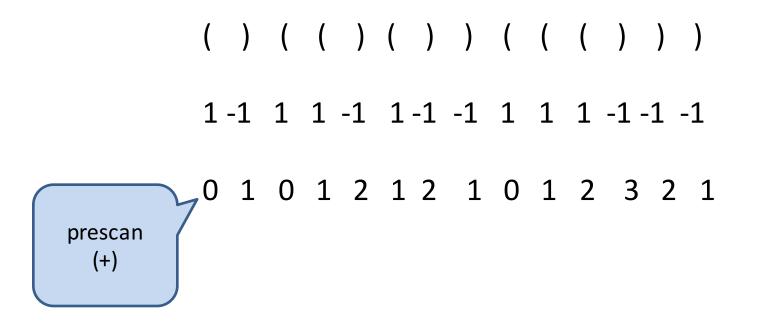
End

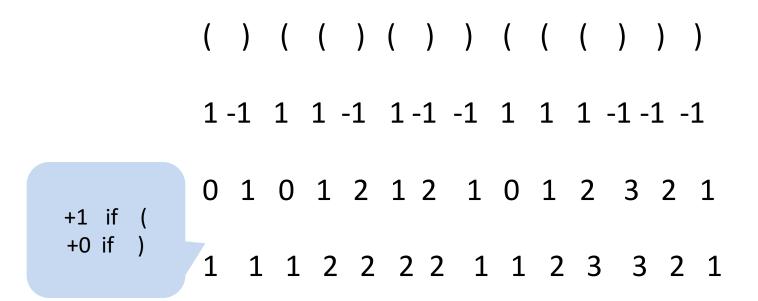
parentheses matching

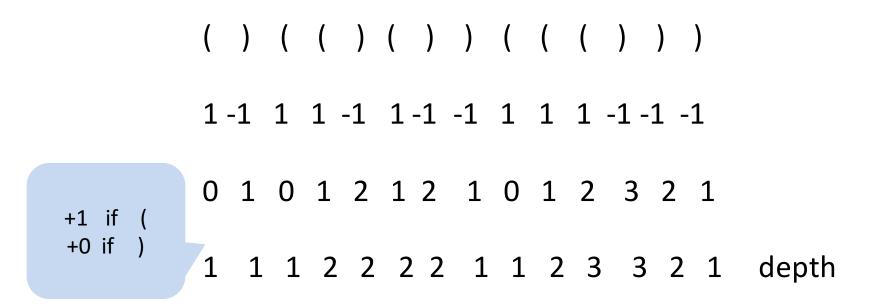
For each index, return the index of the matching parenthesis

```
function parentheses_match(string) =
let
    depth = plus_scan({if c==`( then 1 else -1 : c in string});
    depth = {d + (if c==`( then 1 else 0): c in string; d in depth};
    rnk = permute([0:#string], rank(depth));
    ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);
```

() (() ()) ((())) 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1







()	(()	())	((()))	string
1	-1	1	1	-1	1	-1	-1	1	1	1	-1	-1	-1	
0	1	0	1	2	1	2	1	0	1	2	3	2	1	
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
0	1	2	6	7	8	9	3	4	10	12	13	11	5	rank(depth)

()	(()	())	((()))	string
1 ·	-1	1	1	-1	1	-1	-1	1	1	1	-1 ·	-1	-1	
0	1	0	1	2	1	2	1	0	1	2	3	2	1	
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
											11 13		13 5	[0:#string] rank(depth)
0	1	2	7	8	13	3	4	5	6	9	12	10	11	rnk

()	(()	())	((()))	string
1 -	1	1	1	-1	1 -	-1	-1	1	1	1	-1 -	-1 ·	-1	
0	1	0	1	2	1	2	1	0	1	2	3	2	1	
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
											11 13		13 5	[0:#string] rank(depth)
0	1	2	7	8	13	3	4	5	6	כ	14		([0	permute :#string),rank(depth));

()	(()	())	((()))	string
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
0 0	1 1	2 2	3 6	4 7	5 8	6 9	7 3	8 4	9 10	10 12	11 13	12 11	13 5	[0:#string] rank(depth)
0	1	2	7	8	13	3	4	5	6	9	12	10	11	rnk
) 1	0	> 7	2	13	88	4	3	6	5	2	9	11	. 10	ret

()	(()	())	((()))	string
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
												11		rank(depth)
0	1	2	3	4	5	6	7	8	9	10	11	12	13	[0:#string]
0	1	2	-	0	10	2	Λ	-	C	0	10	10	4.4	
U	1	2		8	13	3	4	5	6	9	12	10	11	rnk
				1 -	38	л	2	C						
Т	U	/	Z	1:	5 ð	4	3	b						

interleave(odd_elts(rnk), even_elts(rnk))

()	(()	())	((()))	string
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
0	1	2	6	7	8	9	3	4	10	12	13	11	5	rank(depth)
0	1	2	3	4	5	6	7	8	9	10	11	12	13	[0:#string]
1	0	7	2	13	8	4	3	6	5	2	9	11	10	ret
0	1	2	7	8	13	3	4	5	6	9	12	10	11	rnk
1	0	7	4	3	6	5	2	13	8 1 2	2 1 1	10	9	8	

()	(()	())	((()))	string
1	1	1	2	2	2	2	1	1	2	3	3	2	1	depth
												11 12	5 13	rank(depth) [0:#string]
												11 10		ret rnk
1	0	7	4	3	6	5	2	13	12	- I J	L 10	,		permute(ret,rnk);

