
Modeling Tutorial



Today
Two sessions - after lunch we will look at ModelJUnit

Before lunch:

● System -> model
○ From apparent functionality
○ In more detail - from source code





How to model this?
What are our inputs?

Which states do we have?

Possible outputs?



How to model this?
What are our inputs?

● Mouse over
● QuickFix (Alt+Enter, Enter)
● Add correct source code
● Add incorrect source code

Which states do we have?

● There's dead code
● There's no dead code

Possible outputs?

● Add highlighting
● Remove highlighting
● Tooltip
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You can also convert code into a model
[NOT A GOOD IDEA IN GENERAL]
● So far you've been given a specification of some sort, and asked to build a 

model.
○ Source code is also (a very precise) specification!

● Let's look at a simple example: public class Looper {
   private int n = 0;
   public void loop() {
       System.out.println("Foo");

       for (int i = 0; i < 10; i++) {
           n = i;
           System.out.println("Baz");
       }

       System.out.println("Bar");
   }
}
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Loop 
done loop

;i:=
0;p

rin
t("

Foo
")

[i<10]
iterate;i:=i+1;print("Baz")

[i=10] iterate;print("Bar")
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[problemDetected()] 
recurse;problems:=getProb()
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[problems!=null] quickFix; 
problems:=null

recurse


