
Modeling Tutorial

Today
Two sessions - after lunch we will look at ModelJUnit

Before lunch:

● System -> model
○ From apparent functionality
○ In more detail - from source code

How to model this?
What are our inputs?

Which states do we have?

Possible outputs?

How to model this?
What are our inputs?

● Mouse over
● QuickFix (Alt+Enter, Enter)
● Add correct source code
● Add incorrect source code

Which states do we have?

● There's dead code
● There's no dead code

Possible outputs?

● Add highlighting
● Remove highlighting
● Tooltip

FSM!

Dead
code

No
dead
code

ad
dS

ou
rce

FSM!

Dead
code

No
dead
code

ad
dS

ou
rce

FSM!

Dead
code

No
dead
code

addBadSource

quickFix

addSource
addSource

addBadSource

ad
dS

ou
rce

You can also convert code into a model
[NOT A GOOD IDEA IN GENERAL]
● So far you've been given a specification of some sort, and asked to build a

model.
○ Source code is also (a very precise) specification!

● Let's look at a simple example: public class Looper {
 private int n = 0;
 public void loop() {
 System.out.println("Foo");

 for (int i = 0; i < 10; i++) {
 n = i;
 System.out.println("Baz");
 }

 System.out.println("Bar");
 }
}

FSM!

FSM!

Loop
done loop

;i:=
0;p

rin
t("

Foo
")

[i<10]
iterate;i:=i+1;print("Baz")

[i=10] iterate;print("Bar")

FSM!

FSM!

Stable

analyze
DfaWith
Nested
Closure
s

doneRecursing

addSource

[problemDetected()]
recurse;problems:=getProb()

ad
dS

ou
rce

[problems!=null] quickFix;
problems:=null

recurse

