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Exercise 1 from 12/08

Analyze the time complexity

~

for(int r = 0: r < M: r++)
for(int ¢ = 0: ¢c < N; c++)
stack.push(c);

~

in terms of M, N and |stack]|
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Implement append in O(1)
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Linked List with pointer to last
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Stack:
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pop() O(1)

findMin() o(1)




Exercise 3.29

Print a singly linked list in reverse in constant space:
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rxsj D ( Rev Loop )
— while (here # null) do

next = here.next

here.next = prev
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Exercise 5 from13/04

Dynamic Array:

e ins(x) // Insertin first empty position

e del() // Removes the last element
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Exercise 5 from13/04

For every N exists
SN : Sequence of N operations

such that
T(SN) = Q(N?2)




