N

-

Data Structures

Exercise Session

O

o020
-

Qb Marco Vassena fb

Exercise 1 from 12/08

Analyze the time complexity

~

for(int r = 0: r < M: r++)
for(int ¢ = 0: ¢c < N; c++)
stack.push(c);

~

in terms of M, N and |stack]|

Exercise 3 from 12/04

2 | 3 |.append |)

Exercise 3 from 12/04

2 | 3 |.append |)

11 2[3|4]|5

Exercise 3 from 12/04

2 | 3 |.append ()

11 2[3|4]|5

Implement append in O(1)

Linked List

Linked List

List
v

Linked List

— — ()

Linked List

head L List
(N
T

LListNode
\ 4

K

head

Linked List

List
é)

zikListNode
\ 4

Eiws

next

>

head

Linked List

List
é)

LlstNode

DJLI B

next

Linked List

head [L' List
(N
T

LlstNode null

DJLI G

next

D.append (D)

aii KRN

L

(O(N)

\ D.append (D)
FHoHe e

Linked List with pointer to last

()

- _/

Elpe Elgn Eln

Linked List with pointer to last

Linked List with pointer to last

L) L tail

D.append (D)

el

L
T

Exercise 3.25a

Stack:

Exercise 3.25a

Stack:

oush(x)

Exercise 3.25a

Stack:

oush(x) o(1)

Exercise 3.25a

Stack:

oush(x) o(1)

Exercise 3.25a

Stack:

oush(x) o(1)

pop()

Exercise 3.25a

Stack:

oush(x) o(1)

pop() O(1)

Exercise 3.25a

Stack:

oush(x) o(1)

pop() O(1)

Exercise 3.25a

Stack:

oush(x) o(1)

pop() O(1)

findMin()

Exercise 3.25a

Stack:

oush(x) o(1)

pop() O(1)

findMin() o(1)

Exercise 3.25a

Stack:

push(x) O(1)

pop() O(1)

findMin() o(1)

Exercise 3.29

Print a singly linked list in reverse in constant space:

Exercise 3.29

Print a singly linked list in reverse in constant space:

.printRev () // O(1) memory

Exercise 3.29

Print a singly linked list in reverse in constant space:

.printRev () // O(1) memory

XS

here

prev

next

XS

here

prev

next

[it)

XS

here

[it)

here = xs.head

prev = null

prev

next

XS

here

[it)

here = xs.head

prev = null

prev

next

XS

here

[it)

here = xs.head

prev = null

prev

next

XS

L

A

here

prev

[it)

here = xs.head

prev = null

next

(Rev Loop)

[it)

here = xs.head

prev = null

rxsj D (Rev Loop)
— while (here # null) do

next = here.next

here.next = prev

prev = here

here prev next here = next

XS

here

[it)

here = xs.head

prev = null

(Rev Loop)

prev

next

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

XS

here

[it)

here = xs.head

prev = null

(Rev Loop)

prev

next

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

xs.head = prev

xsjﬂg

[it)

here = xs.head

prev = null

(Rev Loop)

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

xs.head = prev

xsjﬂg

[it)

here = xs.head

prev = null

(Rev Loop)

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

xs.head = prev

xsjﬂﬁ

[it)

here = xs.head

prev = null

(Rev Loop)

while (here # null) do

next = here.next

here.next = prev

prev = here

here = next

[Conc |

xs.head = prev

here

prev

[it)

here = xs.head

prev = null

(Rev Loop)

next

while (here # null) do
next = here.next

here.next = prev

here = next

[Conc |

xs.head = prev

here

prev

[it)

here = xs.head

prev = null

(Rev Loop)

next

while (here # null) do
next = here.next
here.next = prev

prev = here

[Conc |

xs.head = prev

here

prev

[it)

here = xs.head

prev = null

(Rev Loop)

next

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

xs.head = prev|

here

prev

[it)

here = xs.head

prev = null

(Rev Loop)

next

while (here # null) do
next = here.next
here.next = prev
prev = here

here = next

[Conc |

xs.head = prev|

Exercise 5 from13/04

Dynamic Array:

e ins(x) // Insertin first empty position

e del() // Removes the last element

Operations Dynamic Array

Operations Dynamic Array

new()

Operations Dynamic Array

new()

ins(1)]

Operations Dynamic Array

new()

ins(1)]

ins(2)

Operations Dynamic Array
new()
ins(1)]
Double the size if full
v

ins(2)

Operations Dynamic Array

new()
ins(1)]
:) Copy
Double the size if full
Vv v

inS(Z) 1

Operations Dynamic Array
new ()
ins(1)]
5) Copy
Double the size if full
V v
ins(2) 112

Operations Dynamic Array
new()
ins(1)]
5) Copy
Double the size if full
Vv v
ins(2) 112
del()]

Operations Dynamic Array
new ()
ins(1)]
5) Copy
Double the size if full
\ v
ins(2) 112
Resize if half-empty
v
del()]

Operations Dynamic Array
new ()
ins(1)]
5) Copy
Double the size if full
\ v
ins(2) 112
Resize if half-empty
v
del() 11 |- >

Exercise 5 from13/04

For every N exists
SN : Sequence of N operations

such that
T(SN) = Q(N?2)

