Lecture 7
Ana Bove

April 3rd 2014

Overview of today’s lecture:

o More on RE;
o Algebraic laws for regular expressions;
o Equivalence between FA and RE: from FA to RE.

o Product of NFA as for DFA, accepting intersection of languages;
o Union of languages comes naturally, complement not so “immediate”;
o By allowing e-transitions we obtain e-NFA:
o Defined by a 5-tuple (Q, X, 9, qo, F);
0 6:Qx(XU{e}) = Pow(Q);
o ECLOSE needed for §;
Accept set of words x such that 8(go, x) N F # ;

(%}

Given a e-NFA E we can convert it to a DFA D such that
L(E) = L(D);

Hence, also accept the so called regular language.

©

©

April 3rd 2014, Lecture 7 TMV027/DIT321 1/25

Recall: RE and the Language they Define

R,S:=0|ela|R+S|RS|R"

Definition: The /anguage defined by a regular expression is defined by
recursion on the expression:

Base cases: o L(0) = 0;

o L(e) = {e};
o Given ae X, L(a) = {a}.

Recursive cases: o L(R+S) = L(R)U L(S);

o L(RS) = L(R)L(S);
o L(R*) = L(R)".

April 3rd 2014, Lecture 7 TMV027/DIT321 2/25

Example of Regular Expressions
Let ¥ ={0,1}:

o 0" 4+ 1* = {¢,0,00,000,...} U{e1,11,111,...}

o (04 1)* = {¢,0,1,00,01,10, 11,000, 001,010,011, 100, 101, ...}
o (01)* = {¢,01,0101,010101, ...}

o (000)* = {e,000,000000,000000000, ...}

o 01* +1={0,01,011,0111,...} U{ 1}

o ((0(1*)) + 1) = {0,01,011,0111,...} U { 1}

o (01)* +1 = {¢,01,0101,010101,...} U { 1}

o (e+1)(01)*(e +0) = (01)* + 1(01)* + (01)*0 + 1(01)*0

o (01)* + 1(01)* + (01)*0 + 1(01)*0

What do they mean? Are there expressions that are equivalent?

April 3rd 2014, Lecture 7 TMV027/DIT321

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

Idempotent: R+ R =R
Commutative: R+5=S+R In general, RS # SR
Associative: R+(S+T)=(R+S)+T R(ST)=(RS)T
Distributive: R(S+ T)
Identity: R+0 =10
Annihilator: R0 = OR
0* =€ =¢
R?=¢+ R
RT™ = RR* = R*R
R* = (R*)* = R*R* = ¢+ R™

Re=eR=R

—|-||

(1)

Note: Compare (some of) these laws with those for sets on slide 14
lecture 2.

April 3rd 2014, Lecture 7 TMV027/DIT321

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

o Shifting rule: R(SR)* = (RS)*R

o Denesting rule: (R*S)*R* = (R+ S)*
Note: By the shifting rule we also get R*(SR*)* = (R + S)*

o Variation of the denesting rule: (R*S)* =€¢+ (R + S)*S

April 3rd 2014, Lecture 7 TMV027/DIT321

S+RT (S+T)R=SR+ TR

4/25

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that a*b(c + da*b)* = (a+ bc*d)*bc*:

a*b(c + da*b)* = a*b(c*da*b)*c* by denesting (R = ¢, S = da*b)
a*b(c*da*b)*c* = (a*bc*d)*a*bc* by shifting (R = a*b, S = c¢*d)
(a*bc*d)*a*bc* = (a+ bc*d)*bc* by denesting (R = a,S = bc*d)

Example: The set of all words with no substring of more than two
adjacent 0's is (1 + 01 4+ 001)*(e + 0 + 00). Now,

(1+01+001)*(e+0400) = ((¢+0)(e+0)1)*(e+ 0)(e+ 0)
= (e+0)(e+0)(1(e +0)(e + 0))* by shifting
= (e+0+400)(1+ 10 + 100)*

Then (1 + 01 + 001)*(e + 0 4+ 00) = (e + 0 + 00)(1 + 10 + 100)*

April 3rd 2014, Lecture 7 TMV027/DIT321 6/25

Equality of Regular Expressions

Remember that RE are a way to denote languages.
Then, for RE R and S, R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we can prove the
equality of languages.

Example: Let us show that R* = R*R*. Let £L = L(R).

L*C L*L* since e € L*.

Conversely, if L*L* C L* then x = x3x0 with x; € £L* and x» € L*.

If x;1 = € or xo = € then it is clear that x € L*.

Otherwise x; = uiuo ... u, with u; € £ and xo = vivp ... vy, with v; € L.

Then x = x1x0 = U1 ... UVIVD ... Vi iS in L7,

April 3rd 2014, Lecture 7 TMV027/DIT321 7/25

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

Q Convert R and S into concrete regular expressions C and D,
respectively, by replacing each variable in the RE R and S by
(different) concrete symbols.

Example: R(SR)* = (RS)*R can be converted into
a(ba)* = (ab)*a.

Q Prove or disprove whether £(C) = L(D). If L(C) = L(D) then
R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

April 3rd 2014, Lecture 7 TMV027/DIT321 8/25

Example: Proving the Denesting Rule

We can state (R*S)*R* = (R+ S)* by proving L((a*b)*a*) = L((a+ b)*):

C: Let x € (a*b)*a*, then x = vw with v € (a*h)* and w € a*.
By induction on v. If v = € we are done.

Otherwise v = av’ or v = bV’
In both cases v/ € (a*b)* hence by IH v'w € (a+ b)* and so is vw.

O: Let x € (a+ b)*.

By induction on x. If x = ¢ then we are done.

Otherwise x = x’a or x = x'b and x’ € (a + b)*.

By IH x” € (a*b)*a* and then x’ = vw with v € (a*b)* and w € a*.

If x'a = v(wa) € (a*b)*a* since v € (a*b)* and (wa) € a*.
If x'b = (v(wb))e € (a*b)*a* since v(wb) € (a*b)* and € € a*.

April 3rd 2014, Lecture 7 TMV027/DIT321

Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a regular
expression R such that £ = L(R).

Proof: Recall that each regular language has an automaton that recognises it.

We shall construct a regular expression from such automaton.
We will see 2 ways of constructing a regular expression from an
automaton:

o Eliminating states (section 3.2.2);

o By solving a linear equation system using Arden’s Lemma.
(OBS: not in the book!)

April 3rd 2014, Lecture 7 TMV027/DIT321 10/25

From FA to RE: Eliminating States in an Automaton A

This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from g to p, the labels of the paths that went from g to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.

April 3rd 2014, Lecture 7 TMV027/DIT321 11/25

April 3rd 2014, Lecture 7 TMV027/DIT321

Ri1 + Q15" P;

If an arc does not
exist in A, then it is
labelled @ here.

For simplification, we
assume the g's are

different from the p's.

TMV027/DIT321

April 3rd 2014, Lecture 7

For each accepting state g we proceed as before until we have only g¢ and
q left.

For each accepting state g we have 2 cases: qo = q or qo # q.

R
6 The expression is R*.

Ifgo#q: R

U
S
The expression is (R + SU*T)*SU*.
-

If go = g:

The final expression is the sum of the expressions derived for each final
state.

April 3rd 2014, Lecture 7 TMV027/DIT321

Recall:

Observe: Eliminating g is trivial. Eliminating g1g3 and g»qy is also easy.

April 3rd 2014, Lecture 7 TMV027/DIT321 15/25

Example: Regular Expression Representing Gilbreath's
Principle

After eliminating g, g1g3 and g>qs we get:

o (2
—
R

T

o RE when final state is gpg3q43s:

(RB + BR)(RB + BR)* = (RB + BR)™
o RE when final state is g2qags: (RB + BR)(RB)*B(R(RB)*B)*
o RE when final state is q1g3g5: (RB + BR)(BR)*R(B(BR)*R)*

April 3rd 2014, Lecture 7 TMV027/DIT321 16/25

Example: Regular Expression Representing Gilbreath's
Principle
The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

(RB + BR)(RB)*B(R(RB)*B)* = (RB + BR)(RB)*(BR(RB)*)*B by shifting
= (RB + BR)(RB + BR)*B by the shifted-denesting rule
= (RB + BR)'B

Similarly (RB + BR)(BR)*R(B(BR)*R)* = (RB + BR)*R.

Hence the final RE is
(RB+ BR)" + (RB + BR)*B + (RB + BR)™R

which is equivalent to

(RB+ BR)*(e+ B+ R)

April 3rd 2014, Lecture 7 TMV027/DIT321

From FA to RE: Linear Equation System

To any automaton we associate a system of equations such that the
solution will be REs.

At the end we get a RE for the language recognised by the automaton.

This works for DFA, NFA and e-NFA.
To every state g; we associate a variable E;.

Each E; represents the set {x € ¥* | 0(gi,x) € F} (for DFA).
Then Eg represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable E;.

Then the solution for Ep is the RE generating the same language that is
accepted by the FA.

April 3rd 2014, Lecture 7 TMV027/DIT321 18/25
Constructing the Linear Equation System

Consider a state g; and all the transactions coming out if it:

. E,-:a,-1E1—|—...—|—a,-jEj—|—...+a,-nE,,

Then we have the equation

If g; is final then we add ¢
@ E,-:e—l—a,-1E1—|—...—|—a,-jEj—|—...—|—a,-,,E,,

If there is no arrow coming out of g;

‘ then E; = () if g; is not final

or E; = € if g; is final

April 3rd 2014, Lecture 7 TMV027/DIT321 19/25

Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R*S. Furthermore,
if € ¢ L(R) then this is the only solution to the equation X = RX + S.
Proof: (sketch) We have that R* = RR* +e.

Hence R*S = RR*S + S and then X = R*S is a solution to X = RX + S.

One should also prove that:

@ Any solution to X = RX + S contains at least R*S;

o If e ¢ L(R) then R*S is the only solution to the equation
X = RX + S (that is, no solution is "bigger’ than R*S).

See for example Theorem 6.1, pages 185-186 of Theory of Finite Automata, with an
introduction to formal languages by John Carroll and Darrell Long, Prentice-Hall

International Editions.

April 3rd 2014, Lecture 7 TMV027/DIT321 20/25

Example: Regular Expression Representing Gilbreath's
Principle

We obtain the following system of equations (see slide 15):
Eo = RE13 + BEyy Eo34s = € + BE2ss + REi3s
E13 = BEgzas + RE; Exss = € + REopsas + BEq

E>s = REgzss + BE; E135 = € + BEg3as + REq
Eq = (B+ R)Eq

Since E; = (B + R)*(= (), this can be simplified to:

Eo = RE13 + BEy, Eo3a5 = € + BEoss + RE135
E13 = BEgzss E>45 = € + REp3ss
E>s = REgzas E135 = € + BEg3ss

April 3rd 2014, Lecture 7 TMV027/DIT321 21/25

And further to:

Eo = (RB + BR)Ey3ss
Eo3as = (RB + BR)Epzas + €+ B+ R

Then a solution to Eg3ss is
(RB+ BR)* (e + B+ R)
and the RE which is the solution to the problem is
(RB + BR)(RB+ BR)*(e+ B+ R)

or
(RB+ BR)*(e + B+ R)

April 3rd 2014, Lecture 7 TMV027/DIT321

Consider the automaton D

By eliminating states the expression is

bl |d a*b(c + da*b)*

Consider the automaton D’
a c

b By eliminating states the expression is

(a+ bc*d)*bc*

April 3rd 2014, Lecture 7 TMV027/DIT321

Example: Linear Equation System
The linear equations corresponding to the automaton D’ are

Eo = aEy + bE; Ei =€+ cE1 + dEg

The resulting RE depends on the order we solve the system.

If we eliminate Ej first we get Ey = (a + bc*d)*bc*.

If we eliminate Eg first we get Ey = a*b(c + da*b)*.

It should then be that a*b(c + da*b)* = (a + bc*d)*bc*!
(See the proof in slide 6.)

What RE do we obtain for the automaton D?

April 3rd 2014, Lecture 7 TMV027/DIT321

Overview of Next Lecture

Sections 3.2.3, 4-4.2.1:

o Equivalence between FA and RE: from RE to FA;
o Pumping Lemma for RL;

o Closure properties of RL.

April 3rd 2014, Lecture 7 TMV027/DIT321

24/25

25/25

