# Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2014

#### Lecture 6 Ana Bove

March 31st 2014

#### Overview of today's lecture:

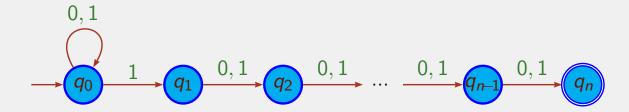
- More on NFA:
- NFA with  $\epsilon$ -Transitions;
- Equivalence between DFA and  $\epsilon$ -NFA;
- Regular expresssions.

## Recap: Non-deterministic Finite Automata

- Defined by a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ ;
- Why "non-deterministic"?;
- $\delta: Q \times \Sigma \to \mathcal{P}ow(Q)$ ;
- Easier to define for some problems;
- Accept set of words x such that  $\hat{\delta}(q_0, x) \cap F \neq \emptyset$ ;
- ullet Given a NFA N we can apply the subset construction and get a DFA D ...
- ... such that  $\mathcal{L}(N) = \mathcal{L}(D)$ ;
- Hence, also accept the so called regular language;

### A Bad Case for the Subset Construction

**Proposition:** Any DFA recognising the same language as the NFA below has at least  $2^n$  states:



This NFA recognises strings over  $\{0,1\}$  such that the *n*th symbol from the end is a 1.

**Proof:** Let  $\mathcal{L}_n = \{x1u \mid x \in \Sigma^*, u \in \Sigma^{n-1}\}$  and  $D = (Q, \Sigma, \delta, q_0, F)$  a DFA.

We want to show that if  $|Q| < 2^n$  then  $\mathcal{L}(D) \neq \mathcal{L}_n$ .

March 31st 2014, Lecture 6

TMV027/DIT321

2/25

## A Bad Case for the Subset Construction (Cont.)

**Lemma:** If  $\Sigma = \{0,1\}$  and  $|Q| < 2^n$  then there exists  $x, y \in \Sigma^*$  and  $u, v \in \Sigma^{n-1}$  such that  $\hat{\delta}(q_0, x0u) = \hat{\delta}(q_0, y1v)$ .

**Proof:** Let us define a function  $h: \Sigma^n \to Q$  such that  $h(z) = \hat{\delta}(q_0, z)$ .

h cannot be *injective* because  $|Q| < 2^n = |\Sigma^n|$ .

Hence, we have  $a_1 \dots a_n \neq b_1 \dots b_n$  such that

$$h(a_1 \ldots a_n) = \hat{\delta}(q_0, a_1 \ldots a_n) = \hat{\delta}(q_0, b_1 \ldots b_n) = h(b_1 \ldots b_n)$$

Let us assume that  $a_i = 0$  and  $b_i = 1$ .

Let 
$$x = a_1 \dots a_{i-1}$$
,  $y = b_1 \dots b_{i-1}$ ,  $u = a_{i+1} \dots a_n 0^{i-1}$ ,  $v = b_{i+1} \dots b_n 0^{i-1}$ .

Hence (recall that for a DFA,  $\hat{\delta}(q, zw) = \hat{\delta}(\hat{\delta}(q, z), w)$ ):

$$\hat{\delta}(q_0, x_0 u) = \hat{\delta}(q_0, a_1 \dots a_n 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, a_1 \dots a_n), 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, b_1 \dots b_n), 0^{i-1}) = \hat{\delta}(q_0, b_1 \dots b_n 0^{i-1}) = \hat{\delta}(q_0, y_1 v)$$

March 31st 2014, Lecture 6 TMV027/DIT321 3/25

# A Bad Case for the Subset Construction (Cont.)

**Lemma:** If  $|Q| < 2^n$  then  $\mathcal{L}(D) \neq \mathcal{L}_n$ .

**Proof:** Assume  $\mathcal{L}(D) = \mathcal{L}_n$ .

Let  $x, y \in \Sigma^*$  and  $u, v \in \Sigma^{n-1}$  as in previous lemma.

Then,  $y1v \in \mathcal{L}(D)$  but  $x0u \notin \mathcal{L}(D)$ ,

That is,  $\hat{\delta}(q_0, y1v) \in F$  but  $\hat{\delta}(q_0, x0u) \notin F$ .

However, this contradicts the previous lemma that says that  $\hat{\delta}(q_0, x_0 u) = \hat{\delta}(q_0, y_1 v)$ .

March 31st 2014, Lecture 6

TMV027/DIT321

4/25

#### Product Construction for NFA

**Definition:** Given 2 NFA  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  over the same alphabet  $\Sigma$ , we define the product  $N_1 \times N_2 = (Q, \Sigma, \delta, q_0, F)$  as follows:

- $Q = Q_1 \times Q_2;$
- $\delta((p_1, p_2), a) = \delta_1(p_1, a) \times \delta_2(p_2, a);$
- $q_0 = (q_1, q_2);$
- $\bullet \ F = F_1 \times F_2.$

**Lemma:**  $(t_1, t_2) \in \hat{\delta}((p_1, p_2), x)$  iff  $t_1 \in \hat{\delta}_1(p_1, x)$  and  $t_2 \in \hat{\delta}_2(p_2, x)$ .

**Proof:** By induction on *x*.

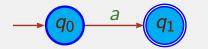
**Proposition:**  $\mathcal{L}(N_1 \times N_2) = \mathcal{L}(N_1) \cap \mathcal{L}(N_2)$ .

March 31st 2014, Lecture 6 TMV027/DIT321 5/25

## Complement for NFA

**OBS:** Given NFA  $N = (Q, \Sigma, \delta, q, F)$  and  $N' = (Q, \Sigma, \delta, q, Q - F)$  we do **not** have in general that  $\mathcal{L}(N') = \Sigma^* - \mathcal{L}(N)$ .

**Example:** Let  $\Sigma = \{a\}$  and N and N' as follows:



$$\mathcal{L}(N) = \{a\}$$



$$\mathcal{L}(N') = \{\epsilon\} \neq \Sigma^* - \{a\}$$

March 31st 2014, Lecture 6

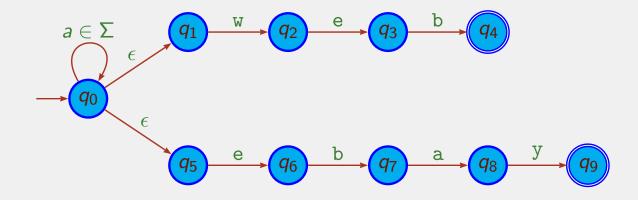
TMV027/DIT321

6/25

#### NFA with $\epsilon$ -Transitions

Another useful extension of automata that does not add more power is the possibility to allow  $\epsilon$ -transitions, that is, transitions from one state to another *without* reading any input symbol.

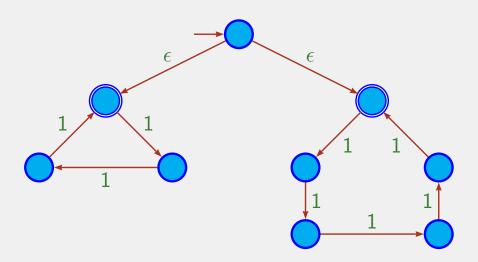
**Example:** The following  $\epsilon$ -NFA searches for the keyword web and ebay:



March 31st 2014, Lecture 6 TMV027/DIT321 7/25

## $\epsilon$ -NFA Accepting Words of Length Divisible by 3 or by 5

**Example:** Let  $\Sigma = \{1\}$ .



March 31st 2014, Lecture 6 TMV027/DIT321 8/25

#### NFA with $\epsilon$ -Transitions

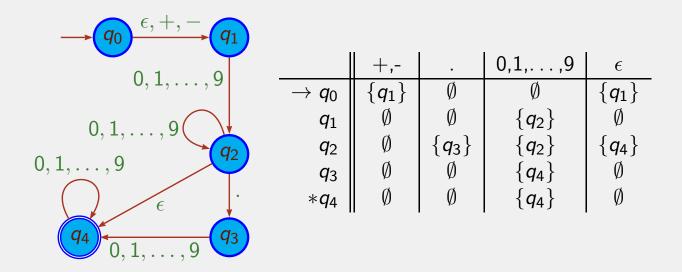
**Definition:** A *NFA with*  $\epsilon$ -transitions ( $\epsilon$ -NFA) is a 5-tuple ( $Q, \Sigma, \delta, q_0, F$ ) consisting of:

- A finite set Q of states;
- $\bigcirc$  A finite set  $\Sigma$  of *symbols* (alphabet);
- A transition function δ : Q × (Σ ∪ {ϵ}) → Pow(Q)
   ("partial" function that takes as argument a state and a symbol or the ϵ-transition, and returns a set of states);
- **○** A start state  $q_0 \in Q$ ;
- **a** A set  $F \subseteq Q$  of *final* or *accepting* states.

March 31st 2014, Lecture 6 TMV027/DIT321 9/25

# $\epsilon$ -NFA Accepting Decimal Numbers

**Exercise:** Define a NFA accepting number with an optional +/- symbol and an optional decimal part.



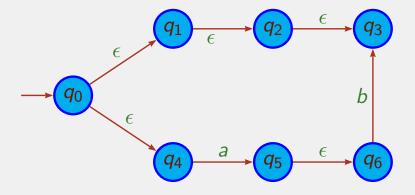
The uses of  $\epsilon$ -transitions represent the *optional* symbol +/- and the *optional* decimal part.

March 31st 2014, Lecture 6 TMV027/DIT321 10/25

### $\epsilon$ -Closures

Informally, the  $\epsilon$ -closure of a state q is the set of states we can reach by doing nothing or by only following paths labelled with  $\epsilon$ .

#### **Example:** For the automaton



the  $\epsilon$ -closure of  $q_0$  is  $\{q_0, q_1, q_2, q_3, q_4\}$ .

March 31st 2014, Lecture 6 TMV027/DIT321 11/25

## $\epsilon$ -Closures

**Definition:** Formally, we define the  $\epsilon$ -closure of a set of states as follows:

- If  $q \in S$  then  $q \in ECLOSE(S)$ ;
- If  $q \in \mathsf{ECLOSE}(S)$  and  $p \in \delta(q, \epsilon)$  then  $p \in \mathsf{ECLOSE}(S)$ .

**Note:** Alternative formulation

$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \frac{q \in \mathsf{ECLOSE}(S) \qquad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

**Definition:** We say that S is  $\epsilon$ -closed iff  $S = \mathsf{ECLOSE}(S)$ .

March 31st 2014, Lecture 6

TMV027/DIT321

12/2

#### Remarks: $\epsilon$ -Closures

• Intuitively,  $p \in \mathsf{ECLOSE}(S)$  iff there exists  $q \in S$  and a sequence of  $\epsilon$ -transitions such that



- The  $\epsilon$ -closure of a single state q can be computed as  $\mathsf{ECLOSE}(\{q\});$
- ECLOSE( $\emptyset$ ) =  $\emptyset$ ;
- S is  $\epsilon$ -closed iff  $q \in S$  and  $p \in \delta(q, \epsilon)$  implies  $p \in S$ ;
- We can prove that ECLOSE(S) is the *smallest* subset of Q containing S which is  $\epsilon$ -closed.

**Exercise:** Implement the  $\epsilon$ -closure!

March 31st 2014, Lecture 6 TMV027/DIT321 13/25

# Extending the Transition Function to Strings

**Definition:** Given an  $\epsilon$ -NFA  $E = (Q, \Sigma, \delta, q_0, F)$  we define

$$egin{aligned} \hat{\delta}: Q imes \Sigma^* &
ightarrow \mathcal{P}ow(Q) \ \hat{\delta}(q,\epsilon) &= \mathsf{ECLOSE}(\{q\}) \ \hat{\delta}(q,ax) &= igcup_{p \in \Delta(\mathsf{ECLOSE}(\{q\}),a)} \hat{\delta}(p,x) \ \end{aligned}$$
 where  $\Delta(S,a) = igcup_{p \in S} \delta(p,a)$ 

**Remark:** By definition,  $\hat{\delta}(q, a) = \text{ECLOSE}(\Delta(\text{ECLOSE}(\{q\}), a)).$ 

**Remark:** We can prove by induction on x that all sets  $\hat{\delta}(q,x)$  are  $\epsilon$ -closed.

This result uses that the union of  $\epsilon$ -closed sets is also a  $\epsilon$ -closed set.

March 31st 2014, Lecture 6

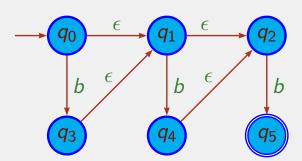
TMV027/DIT32

14/2!

## Language Accepted by a $\epsilon$ -NFA

**Definition:** The *language* accepted by the  $\epsilon$ -NFA  $(Q, \Sigma, \delta, q_0, F)$  is the set  $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$ 

**Example:** Let  $\Sigma = \{b\}$ .



The automaton accepts the language  $\{b, bb, bbb\}$ .

**Note:** Yet again, we could write a program that simulates a  $\epsilon$ -NFA and let the program tell us whether a certain string is accepted or not.

Exercise: Do it!

March 31st 2014, Lecture 6 TMV027/DIT321 15/25

## Eliminating $\epsilon$ -Transitions

**Definition:** Given an  $\epsilon$ -NFA  $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$  we define a DFA  $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$  as follows:

- $Q_D = \{ \mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E) \};$
- $\delta_D(S, a) = \mathsf{ECLOSE}(\Delta(S, a))$  with  $\Delta(S, a) = \bigcup_{p \in S} \delta(p, a)$ ;
- $q_D = \mathsf{ECLOSE}(\{q_E\});$
- $F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}.$

**Note:** This construction is similar to the subset construction but now we need to  $\epsilon$ -close after each step.

**Exercise:** Implement this construction!

March 31st 2014, Lecture 6

TMV027/DIT32

16/25

## Eliminating $\epsilon$ -Transitions

Let E be an  $\epsilon$ -NFA and D the corresponding DFA after eliminating  $\epsilon$ -transitions.

**Lemma:**  $\forall x \in \Sigma^*$ .  $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$ .

**Proof:** By induction on *x*.

**Proposition:**  $\mathcal{L}(E) = \mathcal{L}(D)$ .

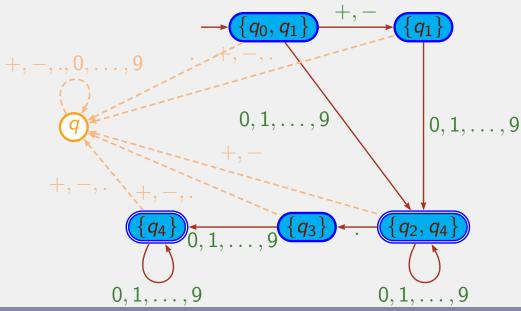
**Proof:**  $x \in \mathcal{L}(E)$  iff  $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$  iff  $\hat{\delta}_E(q_E, x) \in F_D$  iff (by previous lemma)  $\hat{\delta}_D(q_D, x) \in F_D$  iff  $x \in \mathcal{L}(D)$ .

March 31st 2014, Lecture 6 TMV027/DIT321 17/25

# Example: Eliminating $\epsilon$ -Transitions

Let us eliminate the  $\epsilon$ -transitions in  $\epsilon$ -NFA that recognises numbers in slide 10.

We obtain the following DFA:



March 31st 2014, Lecture 6 TMV027/DIT321 18/25

# Finite Automata and Regular Languages

We have shown that DFA, NFA and  $\epsilon$ -NFA are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or  $\epsilon$ -NFA) that accepts the language.

March 31st 2014, Lecture 6 TMV027/DIT321 19/25

## Regular Expressions

Regular expressions (RE) are an "algebraic" way to denote languages.

RE are a simple way to express the strings we want to accept.

They serve as input language for certain systems.

**Example:** grep command in UNIX (K. Thompson) is given a (variation) of a RE as input

We will show that RE are as expressive as DFA and hence, they define all and only the *regular languages*.

## Inductive Definition of Regular Expressions

**Definition:** Given an alphabet  $\Sigma$ , we inductively define the *regular* expressions over  $\Sigma$  as follows:

Base cases: • The constants  $\emptyset$  and  $\epsilon$  are RE;

• If  $a \in \Sigma$  then a is a RE.

Inductive steps: Given the RE R and S, we define the following RE:

- $\bullet$  R + S and RS are RE;
- R\* is RE.

The precedence of the operands is the following:

- The closure operator \* has the highest precedence;
- Next comes concatenation;
- Finally, comes the operator +;
- We use parentheses (,) to change the precedence.

March 31st 2014. Lecture 6 TMV027/DIT321 21/25

# Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for  $a \in \Sigma$ :

$$R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid RR \mid R^*$$

alternatively

$$R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

**Note:** BNF is a way to declare the syntax of a language.

It is very useful when describing *context-free grammars* and in particular the syntax of (big parts of) most programming languages.

March 31st 2014, Lecture 6 TMV027/DIT321 22/2

## Functional Representation of Regular Expressions

For example the expression  $b + (bc)^*$  is given as

```
Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))
```

March 31st 2014, Lecture 6 TMV027/DIT321 23/25

## Language Defined by the Regular Expressions

Given a RE R, it defines the language  $\mathcal{L}(R)$ .

**Definition:** The *language* defined by a regular expression is defined by recursion on the expression:

```
Base cases: \mathcal{L}(\emptyset) = \emptyset;

• \mathcal{L}(\epsilon) = \{\epsilon\};

• Given a \in \Sigma, \mathcal{L}(a) = \{a\}.
```

Recursive cases: 
$$\mathcal{L}(R+S) = \mathcal{L}(R) \cup \mathcal{L}(S)$$
;  
•  $\mathcal{L}(RS) = \mathcal{L}(R)\mathcal{L}(S)$ ;  
•  $\mathcal{L}(R^*) = \mathcal{L}(R)^*$ .

**Note:**  $x \in \mathcal{L}(R)$  iff x is generated/accepted by R.

**Notation:** We write  $x \in R$  or  $x \in \mathcal{L}(R)$  indistinctly.

March 31st 2014, Lecture 6

TMV027/DIT32

24/2

### Overview of Next Lecture

Sections 3.4, 3.2.2:

- More on RE;
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.

March 31st 2014, Lecture 6 TMV027/DIT321 25/25