
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2014

Lecture 14
Ana Bove

May 15th 2014

Overview of today’s lecture:

Closure properties for CFL;

Push-down automata;

Turing machines.

Recap: Context-free Languages

Decision properties for CFL

Is the language empty?
Does a word belong to the language of a certain grammar?

Automata and grammars for programming language technology and
natural language translation.

May 15th 2014, Lecture 14 TMV027/DIT321 1/29

Closure under Union

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1) ∪ L(G2) is a context-free language.

Proof: Let us assume V1 ∩ V2 = ∅ (easy to get via renaming).

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1 | S2},S).

It is now easy to see that L(G) = L(G1) ∪ L(G2) since a derivation will
have the form

S ⇒ S1 ⇒∗ w if w ∈ L(G1)

or
S ⇒ S2 ⇒∗ w if w ∈ L(G2)

May 15th 2014, Lecture 14 TMV027/DIT321 2/29

Closure under Concatenation

Theorem: Let G1 = (V1,T ,R1, S1) and G2 = (V2,T ,R2, S2) be CFG.
Then L(G1)L(G2) is a context-free language.

Proof: Again, let us assume V1 ∩ V2 = ∅.

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1S2},S).

It is now easy to see that L(G) = L(G1)L(G2) since a derivation will have
the form

S ⇒ S1S2 ⇒∗ uv

with
S1 ⇒∗ u and S2 ⇒∗ v

for u ∈ L(G1) and v ∈ L(G2).

May 15th 2014, Lecture 14 TMV027/DIT321 3/29

Closure under Closure

Theorem: Let G = (V ,T ,R, S) be a CFG.
Then L(G)+ and L(G)∗ are context-free languages.

Proof: Let S ′ be a fresh variable.

We construct G + = (V ∪ {S ′},T ,R∪ {S ′ → S | SS ′}, S ′) and
G∗ = (V ∪ {S ′},T ,R∪ {S ′ → ε | SS ′},S ′).

It is easy to see that S ′ ⇒ ε in G∗.

It is also easy to see that S ′ ⇒∗ S ⇒∗ w if w ∈ L(G) is a valid derivation
both in G + and in G∗.

In addition, if w1, . . . ,wk ∈ L(G), it is easy to see that the derivation

S ′ ⇒ SS ′ ⇒∗ w1S ′ ⇒ w1SS ′ ⇒∗ w1w2S ′ ⇒∗ . . .
⇒∗ w1w2 . . .wk−1S ′ ⇒∗ w1w2 . . .wk−1S ⇒∗ w1w2 . . .wk−1wk

is a valid derivation both in G + and in G∗.
May 15th 2014, Lecture 14 TMV027/DIT321 4/29

Non Closure under Intersection

Example: Consider the following languages over {a, b, c}:

L1 = {akbkcm | k,m > 0}

L2 = {ambkck | k ,m > 0}

It is easy to give CFG generating both L1 and L2, hence L1 and L2 are
CFL.

However L1 ∩ L2 = {akbkck | k > 0} is not a CFL (see slide 26 lecture 12).

May 15th 2014, Lecture 14 TMV027/DIT321 5/29

Closure under Intersection with Regular Language

Theorem: If L is a CFL and P is a RL then L ∩ P is a CFL.

Proof: See Theorem 7.27 in the book.

(It uses push-down automata which we have not seen.)

Example: Consider the following language over Σ = {0, 1}:

L = {ww | w ∈ Σ∗}

Consider now L′ = L ∩ L(0∗1∗0∗1∗) = {0n1m0n1m | n,m > 0}.

L′ is not a CFL (see exercise 6 on exercises for week 7).

Hence L cannot be a CFL since L(0∗1∗0∗1∗) is a RL.

May 15th 2014, Lecture 14 TMV027/DIT321 6/29

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that
L1 ∩ L2 = L1 ∪ L2

If CFL are closed under complement then they should be closed under
intersection (since they are closed under union).

Then CFL are in general not closed under complement.

May 15th 2014, Lecture 14 TMV027/DIT321 7/29

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let L be a CFL over Σ.

It is easy to give a CFG that generates Σ∗.

Observe that L = Σ∗ − L.

Then if CFL are closed under difference they would also be closed under
complement.

Theorem: If L is a CFL and P is a RL then L − P is a CFL.

Proof: Observe that P is a RL and L − P = L ∩ P.

May 15th 2014, Lecture 14 TMV027/DIT321 8/29

Closure under Reversal and Prefix

Theorem: If L is a CFL then so is Lr = {rev(w) | w ∈ L}.

Proof: Given a CFG G = (V ,T ,R,S) for L we construct the grammar
G r = (V ,T ,Rr, S) where Rr is such that, for each rule A→ α in R, then
A→ rev(α) is in Rr.

One should show by induction on the length of the derivations in G and
G r that L(G r) = Lr.

Theorem: If L is a CFL then so is Prefix(L).

Proof: For closure under prefix see exercise 7.3.1 part a) in the book.

May 15th 2014, Lecture 14 TMV027/DIT321 9/29

Closure under Homomorphisms

Theorem: CFL are closed under homomorphisms.

Proof: See Theorem 7.24 point 4 in the book.

(It uses the notion of substitution which we have not seen.)

May 15th 2014, Lecture 14 TMV027/DIT321 10/29

Push-down Automata

Push-down automata (PDA) are essentially ε-NFA with the addition of a
stack where to store information.

The stack is needed to give the automata extra “memory”.

Example: To recognise the language 0n1n we proceed as follows:

When reading the 0’s, we push a symbol into the stack;

When reading the 1’s, we pop the symbol on top of the stack;

We accept the word if when we finish reading the input then the
stack is empty.

The languages accepted by the PDA are exactly the CFL.

See the book, sections 6.1–6.3.

May 15th 2014, Lecture 14 TMV027/DIT321 11/29

Variation of Push-down Automata

DPDA = DFA + stack: Accepts a language that is between the RL and
the CFL.
The lang. accepted by DPDA have unambiguous grammars.
However, not all languages that have unambiguous
grammars can be accepted by these DPDA.

Example: The language generated by the unambiguous
grammar

S → 0S0 | 1S1 | ε
cannot be recognised by a DPDA.
See section 6.4 in the book.

2 or more stacks: A PDA with at least 2 stacks is as powerful as a TM.
Hence these PDA can recognise the recursively enumerable
languages.
See section 8.5.2.

May 15th 2014, Lecture 14 TMV027/DIT321 12/29

Undecidable Problems

Definition: An undecidable problem is a decision problem for which it is
impossible to construct a single algorithm that always leads to a correct
yes-or-no answer.

Example: Halting problem: does this program terminate?

There are many undecidable for CFL:

Is the CFG G ambiguous?

Is the CFL L inherently ambiguous?

If L1 and L2 are CFL, is L1 ∩ L2 = ∅?
If L1 and L2 are CFL, is L1 = L2? is L1 ⊆ L2?

If L is a CFL and P a RL, is P = L? is P ⊆ L?

If L is a CFL over Σ, is L = Σ∗?

May 15th 2014, Lecture 14 TMV027/DIT321 13/29

Undecidable Problems

To prove that a certain problem P is undecidable one usually reduces an
already known undecidable problem U to the problem P: instances of U
become instances of P.

(Can be seen like one “transforms” U so it “becomes” P).

That is, w ∈ U iff w ′ ∈ P for certain w and w ′.
Then, a solution to P would serve as a solution to U.

However, we know there are no solutions to U since U is known to be
undecidable.
Then we have a contradiction.

Example: We can use grammars to show that the Post’s correspondence
problem is undecidable (Emil Post, 1946) by showing that a grammar is
ambiguous iff the PCP has a solution.
May 15th 2014, Lecture 14 TMV027/DIT321 14/29

Undecidable and Intractable Problems

The theory of undecidable problems provides a guidance about what we
may or may not be able to perform with a computer.

One should though distinguish between undecidable problems and
intractable problems, that is, problems that are decidable but require a
large amount of time to solve them.

(In daily life, intractable problems are more common than undecidable ones.)

To reason about both kind of problems we need to have a basic notion of
computation.

May 15th 2014, Lecture 14 TMV027/DIT321 15/29

Entscheidungsproblem (Decision Problem)

The Entscheidungsproblem (David Hilbert 1928) asks for an algorithm to
decide whether a given statement is provable from the axioms using the
rules of first-order logic.

To answer the question, the notion of algorithm had to be formally defined.

In 1936, Alonzo Church defined the concept of effective calculable based
on his λ-calculus.

Also in 1936, Alan Turing presented the Turing machines.

(It was then proved that these are equivalent models of computation.)

In 1936, both published independent papers showing that a general
solution to the Entscheidungsproblem is impossible.

May 15th 2014, Lecture 14 TMV027/DIT321 16/29

Alan Turing (1912 – 1954)

Alan Turing was a mathematician, logician, cryptanalyst, and
computer scientist.
In the 50’ he also became interested in chemistry;

He took his Ph.D. in 1938 at Princeton with Alonzo Church;

He invented the concept of a computer, called Turing Machine (TM);

Turing showed that TM could perform any kind of computation;

He also showed that his notion of computable was equivalent to
Church’s notion of effective calculable;

During the WWII he helped Britain to break the German Enigma
machines and saved many lives!

Since 1966, ACM annually gives the Turing Award for contributions
to the computing community.

May 15th 2014, Lecture 14 TMV027/DIT321 17/29

Turing Machines (1936)

Theoretically, a TM is just as powerful as any other computer!
Powerful here refers only to which computations a TM is capable of doing, not to

how fast or efficiently it does its job.

Conceptually, a TM has a finite set of states, a finite alphabet
(containing a blank symbol), and a finite set of instructions;

Physically, it has a head that can read, write, and move along an
infinitely long tape (on both sides) that is divided into cells.

Each cell contains a symbol of the alphabet (possibly the blank
symbol):

· · · a1 a2 a3 a4 a5 · · ·
↑

May 15th 2014, Lecture 14 TMV027/DIT321 18/29

Turing Machines: More Concretely

Let � represents the blank symbol and let Σ be a non-empty
alphabet of symbols such that {�, L,R} ∩ Σ = ∅.
Now, we define Σ′ = Σ ∪ {�};

The read/write head of the TM is always placed over one of the cells.
We said that that particular cell is being read, examined or scanned;

At every moment, the TM is in a certain state q ∈ Q, where Q is a
non-empty and finite set of states;

In some cases, we consider a set F of final states.

May 15th 2014, Lecture 14 TMV027/DIT321 19/29

Turing Machines: Transition Functions

In one move, the TM will:

1 Change to a (possibly) new state;

2 Replace the symbol below the head by a (possibly) new symbol;

3 Move the head to the left (denoted by L) or to the right (denoted by
R).

The behaviour of a TM is described by a (possibly partial) transition
function

δ ∈ Q × Σ′ → Q × Σ′ × {L,R}

δ is such that for every q ∈ Q, a ∈ Σ′ there is at most one instruction.

Note: We have a deterministic TM.

May 15th 2014, Lecture 14 TMV027/DIT321 20/29

How to Compute with a TM?

Before the execution starts, the tape of a TM looks as follows:

· · · a1 a2 · · · an−1 an b1 · · · bm · · ·

↑

The input data is placed on the tape, if necessary separated with
blanks;

There are infinitely many blank to the left and to the right of the
input;

The head is placed on the first symbol of the input;

The TM is in a special initial state q0 ∈ Q;

The machine then proceeds according to the transition function δ.

May 15th 2014, Lecture 14 TMV027/DIT321 21/29

Turing Machine: Formal Definition

Definition: A TM is a 6-tuple (Q,Σ, δ, q0,�,F) where:

Q is a non-empty, finite set of states;

Σ is a non-empty alphabet such that {�, L,R} ∩ Σ = ∅;
δ ∈ Q × Σ′ → Q × Σ′ × {L,R} is a transition function, where
Σ′ = Σ ∪ {�};
q0 ∈ Q is the initial state;

� is the blank symbol, � /∈ Σ;

F is a non-empty, finite set of final or accepting states, F ⊆ Q.

Note: In some cases, the set F is not relevant (compare with FA).

May 15th 2014, Lecture 14 TMV027/DIT321 22/29

Result of a Turing Machine

Definition: Let M = (Q,Σ, δ, q0,�,F) be a TM.
We say that M halts if for certain q ∈ Q and a ∈ Σ, δ(q, a) is undefined.

Whatever is written in the tape when the TM halts can be considered as
the result of the computation performed by the TM.

If we are only interested in the result of a computation, we can omit F
from the formal definition of the TM.

May 15th 2014, Lecture 14 TMV027/DIT321 23/29

Examples

Example: Let Σ = {0, 1}, Q = {q0} and let δ be as follows:

δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)

What does this TM do?

Example: The execution of a TM might loop.

Consider the following set of instructions for Σ and Q as above.

δ(q0, a) = (q0, a,R) with a ∈ Σ ∪ {�}

May 15th 2014, Lecture 14 TMV027/DIT321 24/29

Recursive and Recursive Enumerable Languages

Definition: Let M = (Q,Σ, δ, q0,�,F) be a TM.
The TM M accepts a word w ∈ Σ∗ if when we run M with w as input
data we reach a final state.

Definition: The language accepted by a TM is the set of words that are
accepted by the TM.

Definition: A languages is called recursively enumerable if there is a TM
accepting the words in that language.

Definition: A Turing decider is a TM that never loops, that is, the TM
halts.

Definition: A language is recursive or decidable if there is a Turing
decider accepting the words in the language.

May 15th 2014, Lecture 14 TMV027/DIT321 25/29

Example

The following TM accepts the language L = {ww r | w ∈ {0, 1}∗}.
(One can prove using the Pumping lemma that this language is not context-free.)

Let Σ = {0, 1,X ,Y }, Q = {q0, . . . , q7} and F = {q7},

Let a ∈ {0, 1}, b ∈ {X ,Y ,�}, and c ∈ {X ,Y }.

δ(q0, 0) = (q1,X ,R) δ(q0, 1) = (q3,Y ,R)
δ(q1, a) = (q1, a,R) δ(q3, a) = (q3, a,R)
δ(q1, b) = (q2, b, L) δ(q3, b) = (q4, b, L)
δ(q2, 0) = (q5,X , L) δ(q4, 1) = (q5,Y , L)
δ(q5, a) = (q6, a, L) δ(q5, c) = (q7, c ,R)
δ(q6, a) = (q6, a, L) δ(q6, c) = (q0, c ,R)

What happens with the input 0110?
And with the input 010?
May 15th 2014, Lecture 14 TMV027/DIT321 26/29

Turing Completeness

Definition: A collection of data-manipulation rules (for example, a
programming language) is said to be Turing complete if and only if such
system can simulate any single-taped Turing machine.

Example: Recursive functions (Stephen Kleene, 1936?) and λ-calculus
(Alonzo Church, 1936).

The three models of computation were shown to be equivalent by Church,
Kleene & (John Barkley) Rosser (1934–6) and Turing (1936-7).

May 15th 2014, Lecture 14 TMV027/DIT321 27/29

Church-Turing Thesis (AKA Church Thesis)

A function is algorithmically computable if and only if it can be defined as
a Turing Machine.

(Recall that the λ-calculus and Turing machines were shown to be computationally

equivalent).

Note: This is not a theorem and it can never be one since there is no
precise way to define what it means to be algorithmically computable.

However, it is strongly believed that both statements are true since they
have not been refuted in the ca. 80 years which have passed since they
were first formulated.

May 15th 2014, Lecture 14 TMV027/DIT321 28/29

Overview of Next Lecture

More on Turing machines;

Summary of the course;

(Exam exercises).

May 15th 2014, Lecture 14 TMV027/DIT321 29/29

