Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2014

Lecture 13 Ana Bove

May 12th 2014

Overview of today's lecture:

• Decision properties for CFL.

Recap: Context-Free Grammars

- Regular languages are also context-free;
- Chomsky hierarchy;
- Simplification of grammars:
 - Elimination of ϵ -productions;
 - Elimination of unit productions;
 - Elimination of useless symbols:
 - Elimination of non-generating symbols;
 - Elimination of non-reachable symbols;
- Chomsky normal forms;
- Pumping lemma for context-free languages.

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

• The language is empty;

(See the algorithm that tests for generating symbols in slide 6 lecture 12: if \mathcal{L} is a CFL given by a grammar with start variable S, then \mathcal{L} is empty if S is not generating.)

• A certain string belong to the language.

May 12th 2014, Lecture 13

TMV027/DIT32

Testing Membership in a Context-Free Language

Checking if $w \in \mathcal{L}(G)$, where |w| = n, by trying all productions may be exponential on n.

An efficient way to check for membership in a CFL is based on the idea of *dynamic programming*.

(Method for solving complex problems by breaking them down into simpler problems, applicable mainly to problems where many of their subproblems are really the same; not to be confused with the *divide and conquer* strategy.)

The algorithm is called the *CYK algorithm* after the 3 people who independently discovered the idea: Cock, Younger and Kasami.

It is a $O(n^3)$ algorithm.

The CYK Algorithm

Let $G = (V, T, \mathcal{R}, S)$ be a CFG in CNF and $w = a_1 a_2 \dots a_n \in T^*$. Does $w \in \mathcal{L}(G)$?

In the CYK algorithm we fill a table

where $V_{ij} \subseteq V$ is the set of A's such that $A \Rightarrow^* a_i a_{i+1} \dots a_i$.

We want to know if
$$S \in V_{1n}$$
, hence $S \Rightarrow^* a_1 a_2 \ldots a_n$.

```
May 12th 2014, Lecture 13
```

TMV027/DIT321

4/9

CYK Algorithm: Observations

- Each row corresponds to the substrings of a certain length:
 - bottom row is length 1,
 - second from bottom is length 2,
 - . . .
 - top row is length *n*;
- We work row by row upwards and compute the V_{ij} 's;
- In the bottom row we have i = j, that is, ways of generating the string a_i;
- V_{ij} is the set of variables generating a_ia_{i+1}...a_j of length j − i + 1 (hence, V_{ij} is in row j − i + 1);
- In the rows below that of V_{ij} we have all ways to generate shorter strings, including all prefixes and suffixes of a_ia_{i+1}...a_j.

CYK Algorithm: Table Filling

Remember we work with a CFG in CNF. We compute V_{ij} as follows: Base case: First row in the table. Here i = j. Then $V_{ii} = \{A \mid A \rightarrow a_i \in \mathcal{R}\}.$ Induction step: To compute V_{ij} for i < j we have all V_{pq} 's in rows below. The length of the string is at least 2, so $A \Rightarrow^* a_i a_{i+1} \dots a_i$ starts with $A \Rightarrow BC$ such that $B \Rightarrow^* a_i a_{i+1} \dots a_k$ and $C \Rightarrow^* a_{k+1} \dots a_i$ for some k. So $A \in V_{ij}$ if $\exists k, i \leq k < j$ such that • $B \in V_{ik}$ and $C \in V_{(k+1)j}$; • $A \rightarrow BC \in \mathcal{R}$. We need to look at $(V_{ii}, V_{(i+1)j}), (V_{i(i+1)}, V_{(i+2)j}), \dots, (V_{i(i-1)}, V_{ij}).$ May 12th 2014, Lecture TMV027/DIT321 CYK Algorithm: Example Consider the grammar given by the rules

 $S \rightarrow AB \mid BA \qquad A \rightarrow AS \mid a \qquad B \rightarrow BS \mid b$

Does *abba* belong to the language generated by the grammar?

We fill the corresponding table:

$$\begin{cases} S \\ \emptyset & \{B\} \\ \{S\} & \emptyset & \{S\} \\ \{A\} & \{B\} & \{B\} & \{A\} \\ a & b & b & a \end{cases}$$

 $S \in V_{14}$ then $S \Rightarrow^* abba$.

CYK Algorithm: Example

Consider the grammar given by the rules

Does babaa belong to the language generated by the grammar?

We fill the corresponding table:

$$S \notin V_{15}$$
 then $S \not\Rightarrow^* babaa$

May 12th 2014, Lecture 13

Overview of Next Lecture

Sections 7.3, and bit of 6 and of 8:

- Closure properties for CFL;
- Push-down automata;
- Turing machines.