
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2014

Lecture 10
Ana Bove

April 28th 2014

Overview of today’s lecture:

Context-free grammars;

Derivations;

Parse trees;

Proofs in grammars.

Recap: Regular Languages

Decision properties of RL:

Is it empty?

Does it contain this word?

Contains ε, contains at most ε, is infinite;

Equivalence of languages by using table-filling algorithm;

Minimisation of DFA by using table-filling algorithm.

April 28th 2014, Lecture 10 TMV027/DIT321 1/28

Context-Free Grammars

Not all languages are regular languages as we have seen.

Context-free grammars (CFG) define the so called context-free languages.

They have been developed in the mid-1950s by Noam Chomsky.

We will see (next lecture) that

regular languages ⊂ context-free languages

CFG play an important role in the description and design of programming languages and

compilers, for example, for the implementation of parsers.

April 28th 2014, Lecture 10 TMV027/DIT321 2/28

Example: Palindromes

Let us consider the language L of palindromes over Σ = {0, 1}.

That is, L = {w ∈ Σ∗ | w = rev(w)}.

Example of palindromes over Σ are ε, 0110, 00011000, 010.

We can use the Pumping Lemma for RL to show that L is not regular.

How can L be defined?

We have that (inductive definition):

ε, 0 and 1 are in L;

if w ∈ L then 0w0 and 1w1 are also in L.

April 28th 2014, Lecture 10 TMV027/DIT321 3/28

Example: CFG for Palindromes

P → ε
P → 0
P → 1
P → 0P0
P → 1P1

The variable P represents the class of the strings that are palindromes.

The rules say how to construct the strings in the language.

April 28th 2014, Lecture 10 TMV027/DIT321 4/28

Example: CFG for Simple Expressions

Here we define 2 classes of strings: those representing simple numerical
expressions (denoted by E) and those representing Boolean expressions
(denoted by B).

E → 0
E → 1
E → E + E
E → if B then E else E

B → True
B → False
B → E < E
B → E == E

April 28th 2014, Lecture 10 TMV027/DIT321 5/28

Compact Notation

We can group all productions defining elements in a certain class to have a
more compact notation.

Example: Palindromes can be defined as

P → ε | 0 | 1 | 0P0 | 1P1

Example: The expressions can be defined as

E → 0 | 1 | E + E | if B then E else E
B → True | False | E < E | E == E

April 28th 2014, Lecture 10 TMV027/DIT321 6/28

Context-Free Grammars

Definition: A context-free grammar is a 4-tuple G = (V ,T ,R,S)
where:

V is a finite set of variables or non-terminals: each variable represents
a language or set of strings;

T is a finite set of symbols or terminals: think of T as the alphabet
of the language you are defining;

R is a finite set of rules or productions which recursively define the
language. Each production consists of:

A variable being defined in the production;
The symbol “→”;
A string of 0 or more terminals and variables called the body of the
production;

S is the start variable and represents the language we are defining;
other variables define the auxiliary classes needed to define our
language.

April 28th 2014, Lecture 10 TMV027/DIT321 7/28

Example: C++ Compound Statements

A context free grammar for statements:

({S , LC ,C ,E , Id , LLoD, L,D}, {a, . . . ,A, . . . , 0, . . . , (,), . . .},R,S)

with R as follows:

S → {LC}
LC → ε | C LC
C → S | if (E) C | if (E) C else C |

while (E) C | do C while (E) | for (C E ; E) C |
case E : C | switch (E) C | return E ; | goto Id ;
break ; | continue;

E → . . .
Id → L LLoD
LLoD → L LLoD | D LLoD | ε
L → A | B | ... | Z | a | b | ... | z
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

April 28th 2014, Lecture 10 TMV027/DIT321 8/28

Notation for Context-Free Grammars

We use the following convention when working with CFG:

a, b, c, . . . , 0, 1, . . . , (,),+,%, . . . are terminal symbols;

A,B,C , . . . are variables (non-terminals);

w , x , y , z , . . . are strings of terminals;

X ,Y , . . . are either a terminal or a variable;

α, β, γ, . . . are strings of terminals and/or variables;
In particular, they can also represent strings with only variables.

April 28th 2014, Lecture 10 TMV027/DIT321 9/28

Working with Grammars

We use the productions of a CFG to infer that a string w is in the
language of a given variable.

Example: Let us derive that 0110110 is a palindrome.

We can do this in 2 (equivalent) ways:

Recursive inference: From body to head.

1) 0 is palindrome by rule P → 0
2) 101 is palindrome using 1) and rule P → 1P1
3) 11011 is palindrome using 2) and rule P → 1P1
4) 0110110 is palindrome using 3) and rule P → 0P0

Derivation: (Notation: ⇒) From head to body.

P ⇒ 0P0⇒ 01P10⇒ 011P110⇒ 0110110

April 28th 2014, Lecture 10 TMV027/DIT321 10/28

Formal Definition of a Derivation

Let G = (V ,T ,R, S) be a CFG.

Definition: Let A ∈ V and α, β ∈ (V ∪ T)∗. Let A→ γ ∈ R.
Then αAβ ⇒ αγβ is one derivation step (alternative αAβ

G⇒ αγβ).

Example:
B ⇒ E == E ⇒ 0 == E ⇒ 0 == E + E ⇒ 0 == E + 1⇒ 0 == 0 + 1

April 28th 2014, Lecture 10 TMV027/DIT321 11/28

Reflexive-transitive Closure of a Derivation

We can define a relation performing zero or more derivation steps.

Definition: The reflexive-transitive closure of ⇒ is the relation ⇒∗
(alternative

G

⇒∗) defined as follows:

α⇒∗ α
α⇒∗ β β ⇒ γ

α⇒∗ γ

Example: B ⇒∗ 0 == 0 + 1.

Note: We denote A⇒n α when α is derived from A in n steps.

April 28th 2014, Lecture 10 TMV027/DIT321 12/28

Leftmost and Rightmost Derivations

At every derivation step we can choose to replace any variable by the
right-hand side of one of its productions.

Two particular derivations are:

Leftmost derivation: Notations:
lm⇒ and

lm
⇒∗.

At each step we choose to replace the leftmost variable.

Example: B
lm
⇒∗ 0 == 0 + 1

B
lm⇒ E == E

lm⇒ 0 == E
lm⇒ 0 == E + E

lm⇒ 0 == 0 + E
lm⇒ 0 == 0 + 1

Rightmost derivation: Notations:
rm⇒ and

rm
⇒∗.

At each step we choose to replace the rightmost variable.

Example: B
rm
⇒∗ 0 == 0 + 1

B
rm⇒ E == E

rm⇒ E == E +E
rm⇒ E == E +1

rm⇒ E == 0+1
rm⇒ 0 == 0+1

April 28th 2014, Lecture 10 TMV027/DIT321 13/28

Observations on Derivations

Observe: If we have A⇒∗ γ then we also have αAβ ⇒∗ αγβ.

The same sequence of steps that took us from A to γ will also take us
from αAβ to αγβ.

Example: We have E ⇒∗ 0 + 1 since E ⇒ E + E ⇒ 0 + E ⇒ 0 + 1.

This same derivation justifies E == E ⇒∗ E == 0 + 1 since

E == E ⇒ E == E + E ⇒ E == 0 + E ⇒ E == 0 + 1

April 28th 2014, Lecture 10 TMV027/DIT321 14/28

Observations on Derivations

Observe: If we have A⇒ X1X2 . . .Xk ⇒∗ w , then we can break w into
pieces w1,w2, . . . ,wk such that Xi ⇒∗ wi . If Xi is a terminal then Xi = wi .

This can be showed by proving (by induction on the length of the derivation) that if
X1X2 . . .Xk ⇒∗ α then all positions of α that come from expansion of Xi are to the left
of all positions that come from the expansion of Xj if i < j .

To obtain Xi ⇒∗ wi from A ⇒∗ w we need to remove all positions of the sentential form

that are to the left and to the right of all the positions derived from Xi , and all steps not

relevant for the derivation of wi from Xi .

Example: Let B ⇒ E == E ⇒ E == E + E ⇒ E == E + 0⇒
E == E + E + 0⇒ E == 0 + E + 0⇒ 1 == 0 + E + 0⇒ 1 == 0 + 1 + 0.

The derivation from the middle E in the sentential form E == E + E is
E ⇒ E + E ⇒ 0 + E ⇒ 0 + 1.

April 28th 2014, Lecture 10 TMV027/DIT321 15/28

Sentential Forms

Derivations from the start variable have an special role.

Definition: Let G = (V ,T ,R,S) be a CFG and let α ∈ (V ∪ T)∗.
Then S ⇒∗ α is called a sentential form.

We say left sentential form if S
lm
⇒∗ α or right sentential form if S

rm
⇒∗ α.

Example: A sentential form P ⇒∗ 010P010 since

P ⇒ 0P0⇒ 01P10⇒ 010P010

April 28th 2014, Lecture 10 TMV027/DIT321 16/28

Language of a Grammar

Definition: Let G = (V ,T ,R,S) be a CFG. The language of G ,
denoted L(G) is the set of terminal strings that can be derived from the
start variable, that is,

L(G) = {w ∈ T ∗ | S
G

⇒∗ w}

Definition: If a language L is the language of a certain context-free
grammar, then L is said to be a context-free language.

April 28th 2014, Lecture 10 TMV027/DIT321 17/28

Parse Trees

Parse trees are a way to represent derivations.

A parse tree reflects the internal structure of a word of the language.

Using parse trees it becomes very clear which is the variable that was
replaced at each step.

In addition, it becomes clear which terminal symbols where
generated/derived form a particular variable.

Parse trees are very important in compiler theory.

In a compiler, a parser takes the source code into its parse tree.

This parse tree is the structure of the program.

April 28th 2014, Lecture 10 TMV027/DIT321 18/28

Parse Trees

Definition: Let G = (V ,T ,R,S) be a CFG. The parse trees for G are
trees with the following conditions:

Nodes are labelled with a variable;

Leaves are either variables, terminals or ε;

If a node is labelled A and it has children labelled X1,X2, . . . ,Xn

respectively from left to right, then it must exist in R a production of
the form A→ X1X2 . . .Xn.

Note: If a leaf is ε it should be the only child of its parent A and there
should be a production A→ ε.

Note: Of particular importance are the parse trees with root S .

Exercise: Construct the parse trees for 0 == E + 1 and for 001100.
April 28th 2014, Lecture 10 TMV027/DIT321 19/28

Height of a Parse Tree

Definition: The height of a parse tree is the maximum length of a path
from the root of the tree to one of its leaves.

Observe: We count the edges in the tree, and not the number of nodes
and the leaf in the path.

Example: The height of the parse tree for 0 == E + 1 is 3 and the one
for 001100 is 5.

April 28th 2014, Lecture 10 TMV027/DIT321 20/28

Yield of a Parse Tree

Definition: A yield of a parse tree is the string resulted from
concatenating all the leaves of the tree from left to right.

Observations:

We will show later than the yield of a tree is a string derived from the
root of the tree;

Of particular importance are the yields that consist of only terminals;
that is, the leaves are either terminals or ε;

When, in addition, the root is S then we have a parse tree for a string
in the language of the grammar;

We will see that yields can be used to describe the language of a
grammar.

April 28th 2014, Lecture 10 TMV027/DIT321 21/28

Examples of Context Free Grammars

Exercise: Construct a CFG generating {0i1j | j > i > 0}.
S → ε | 0S1 | S1

Exercise: Construct a CFG generating {w ∈ {0, 1}∗ | #0(w) = #1(w)}.
S → ε | 0S1 | 1S0 | SS

Exercise: Construct a grammar for the following language:

{anbncmdm | n,m > 1} ∪ {anbmcmdn | n,m > 1}

S → AB | C
A → aAb | ab
B → cBd | cd
C → aCd | aDd
D → bDc | bc

April 28th 2014, Lecture 10 TMV027/DIT321 22/28

Context-Free Grammars and Inductive Definitions

Each CFG can be seen as an inductive definition.

Example: Consider the grammar for palindromes in slide 4 (and 6).

It can be seen as the following definition:

Base Cases: The empty string is a palindrome;
0 and 1 are palindromes.

Inductive Steps: If w is a palindrome, then so are 0w0 and 1w1.

A natural way then to do proofs on context-free languages is to follow this
inductive structure.

April 28th 2014, Lecture 10 TMV027/DIT321 23/28

Proofs About a Grammar

When we want to prove something about a grammar we usually need to
prove an statement for each of the variables in the grammar.

(Compare this with proofs about FA where we needed statements for each state.)

Proofs about grammars are in general done by:

(course-of-value) induction on the length of a certain string of the
language;

(course-of-value) induction on the length (number of steps) of a
derivation of a certain string;

induction on the structure of the strings in the language;

(course-of-value) induction on the height of the parse tree.

April 28th 2014, Lecture 10 TMV027/DIT321 24/28

Example: Proof About a Grammar

Lemma: Let G be the grammar presented on slide 4. Then L(G) is the
set of palindromes over {0, 1}.

Proof: We will prove that if w ∈ {0, 1}∗, then w ∈ L(G) iff w = rev(w).

If) Let w be a palindrome.
We prove by course of value induction on |w | that w ∈ L(G).

Base cases: If |w | = 0 or |w | = 1 then w is ε, 0 or 1.
We have productions P → ε, P → 0 and P → 1.
Then P ⇒∗ w so w ∈ L(G).

Inductive Steps: Assume |w | > 1.
Since w = rev(w) then w = 0w ′0 or w = 1w ′1, and w ′ = rev(w ′).
|w ′| < |w | so by IH then P ⇒∗ w ′.
If w = 0w ′0 we have P ⇒ 0P0⇒∗ 0w ′0 = w so w ∈ L(G).
Similarly if w = 1w ′1.

April 28th 2014, Lecture 10 TMV027/DIT321 25/28

Example: Proof About a Grammar (Cont.)

Only-if) Let w ∈ L(G), that is P ⇒∗ w .

We prove by induction on the length of the derivation of w that w is a
palindrom, that is, w = rev(w).

Base case: If the derivation is in one step then we should have P ⇒ ε,
P ⇒ 0 and P ⇒ 1. In all cases w is a palindrome.

Inductive Step: Our IH is that if P ⇒n w ′ with n > 0 then w ′ = rev(w ′).

Suppose P ⇒n+1 w . The we have 2 cases:

P ⇒ 0P0⇒n 0w ′0 = w ;

P ⇒ 1P1⇒n 1w ′1 = w .

Observe that in both cases P ⇒n w ′ with n > 0.

Hence by IH w ′ is a palindrome and then so is w .

April 28th 2014, Lecture 10 TMV027/DIT321 26/28

Example: Proof About a Grammar

Exercise: Consider the grammar S → ε | 0S1 | 1S0 | SS .
Show that if S ⇒∗ w then #0(w) = #1(w).

Proof: By course-of-value induction on the length of the derivation.

Base cases: If length is 1 then we have S ⇒ ε and #0(ε) = #1(ε) holds.

Inductive Steps: Assume S ⇒∗ w1 and S ⇒∗ w2 in at most n > 0 steps.
By IH #0(w1) = #1(w1) and #0(w2) = #1(w2).

Let S ⇒n+1 w with n > 0. Then we have:

S ⇒ 0S1⇒n 0w11: S ⇒n w1 so by IH #0(w1) = #1(w1) hence
#0(w) = #0(0w11) = 1 + #0(w1) = 1 + #1(w1) = #1(w);

S ⇒ 1S0⇒n 1w10: Similar ...

S ⇒ SS ⇒n w1w2: S ⇒i w1 and S ⇒j w2 with i , j < n so by IH
#0(w1) = #1(w1) and #0(w2) = #1(w2).
Hence #0(w) = #0(w1) + #0(w2) = #1(w1) + #1(w2) = #1(w).

April 28th 2014, Lecture 10 TMV027/DIT321 27/28

Overview of Next Lecture

Sections 5.2.3–5.2.6, 5.4:

Inference, derivations and parse trees;

Ambiguity in grammars;

Regular grammars.

April 28th 2014, Lecture 10 TMV027/DIT321 28/28

