Preferences, utility and decision making

Christos Dimitrakakis

April 11, 2014

Christos Dimitrakakis

Preferences, utility and decision making

2 April 11, 2014 1 / 20

999

1 Introduction

2 Utility theory

- Rewards and preferences
- Preferences among distributions
- Utility
- Convex and concave utility functions

DQC

Goals of this lecture

Utility

- Understand the concept of preferences.
- See how utility can be used to formalize preferences.
- Show how we can combine utility and probability to deal with decision making under uncertainty.

The decision-theoretic foundations of artificial intelligence.

- Probability: how likely things are?
- Utility: which things do we want?

Interpretations of probability

- Objective: inherent randomness.
- Frequentist: long-term averages.
- Algorithmic: program complexity.
- Subjective: uncertainty.

Interpretations of utility

- Monetary.
- Psychological.
- "true" value of things?

イロト イポト イヨト イヨ

1 Introduction

2 Utility theory

- Rewards and preferences
- Preferences among distributions
- Utility
- Convex and concave utility functions

3 Summary

DQC

Rewards

- We are going to receive a reward r from a set \mathcal{R} of possible rewards.
- We prefer some rewards to others.

Example 1 (Possible sets of rewards \mathcal{R})

- $\blacksquare \mathcal{R}$ is a set of tickets to different musical events.
- $\blacksquare \mathcal{R}$ is a set of financial commodities.

nac

Example 2 (Musical event tickets)

- Case 1: *R* are tickets to different music events at the same time, at equally good halls with equally good seats and the same price. Here preferences simply coincide with the preferences for a certain type of music or an artist.
- Case 2: R are tickets to different events at different times, at different quality halls with different quality seats and different prices. Here, preferences may depend on all the factors.

Example 3 (Route selection)

- \blacksquare $\mathcal R$ contains two routes, one short and one long, of the same quality.
- \mathcal{R} contains two routes, one short and one long, but the long route is more scenic.

Preferences among rewards

Preferences

Let $a, b \in R$.

- Do you prefer a to b? Write $a \succ^* b$.
- Do you like a less than b? Write $a \prec^* b$.
- Do you like *a* as much as *b*? Write $a \equiv^* b$.

We also use \succeq^* and \precsim^* for I like at least as much as and for I don't like any more than

Properties of the preference relations.

(i) For any $a, b \in R$, one of the following holds: $a \succ^* b$, $a \prec^* b$, $a \equiv^* b$.

(ii) If $a, b, c \in R$ are such that $a \preceq^* b$ and $b \preceq^* c$, then $a \preceq^* c$.

Is transitivity a reasonable assumption?

DQC

Is transitivity a reasonable assumption?

Consider r = (a, b), such that:

- $r \succ^* r'$ if a > a' and $|b b'| < \epsilon$
- $r \succ^* r'$ if b >> b'.

DQC

< □ > < □ > < □ > < Ξ > < Ξ >

When we cannot select rewards directly

■ In most problems, we cannot just choose which reward to receive.

DQC

When we cannot select rewards directly

- In most problems, we cannot just choose which reward to receive.
- We can only specify a distribution on rewards from a limited number of choices.

Sac

(日) (四) (三) (三)

When we cannot select rewards directly

- In most problems, we cannot just choose which reward to receive.
- We can only specify a distribution on rewards from a limited number of choices.

Example 4 (Route selection)

- Each reward $r \in R$ is the time it takes to travel from A to B.
- We prefer shorter times.
- There are two routes, P_1 , P_2 .
- Route P_1 takes 10 minutes when the road is clear, but 30 minutes when the traffic is heavy. The probability of heavy traffic on P_1 is q_1 .
- Route P_2 takes 15 minutes when the road is clear, but 25 minutes when the traffic is heavy. The probability of heavy traffic on P_2 is q_2 .

Exercise 1

Say $q_1 = q_2 = 0.5$. Which route would you prefer?

Preferences among probability distributions

Preferences

Let P_1, P_2 be two distributions on (R, \mathcal{F}_R) .

- Do prefer P_1 to P_2 ? Write $P_1 \succ^* P_2$.
- Do you like P_1 less than P_2 ? Write $P_1 \prec^* P_2$.
- Do you like P_1 as much as P_2 ? Write $P_1 \equiv^* P_2$.

We also use \succeq^* and \preceq^* in the usual sense.

Utility

In order to assign preferences to probability distributions, we use the concept of utility.

Sac

Definition 5 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \succeq^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (2.1)

DQC

(日)

Definition 5 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \gtrsim^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (2.1)

Definition 6 (Expected utility)

The expected utility of a distribution P on \mathcal{R} is:

$$\mathbb{E}_{P}(U) = \sum_{r \in \mathcal{R}} U(r)P(r)$$
(2.2)

Definition 5 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \gtrsim^* b$$
 iff $U(a) \ge U(b)$, (2.1)

Definition 6 (Expected utility)

The expected utility of a distribution P on \mathcal{R} is:

$$\mathbb{E}_{P}(U) = \sum_{r \in R} U(r)P(r)$$
(2.2)

Assumption 1 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P. Consequently,

$$P \succeq^* Q \quad iff \quad \mathbb{E}_P(U) \ge \mathbb{E}_Q(U).$$
 (2.3)

イロト イロト イモト イモ

Definition 5 (Utility)

The utility is a function $U: R \to \mathbb{R}$, such that for all $a, b \in R$

$$a \succeq^* b \quad \text{iff} \quad U(a) \ge U(b),$$
 (2.1)

Definition 6 (Expected utility)

The expected utility of a distribution P on \mathcal{R} is:

$$\mathbb{E}_{P}(U) = \int_{R} U(r) \,\mathrm{d}P(r) \tag{2.2}$$

Assumption 1 (The expected utility hypothesis)

The utility of P is equal to the expected utility of the reward under P. Consequently,

$$P \succeq^* Q \quad iff \quad \mathbb{E}_P(U) \ge \mathbb{E}_Q(U).$$
 (2.3)

ヘロン ヘロン ヘヨン ヘヨン

Example 7

r	U(r)	Р	Q
did not enter	0	1	0
paid 1 CU and lost	-1	0	0.99
paid 1 CU and won 10	9	0	0.01

Table : A simple gambling problem

PQ
$$\mathbb{E}(U \mid \cdot)$$
0

Table : Expected utility for the gambling problem

DQC

Example 8

Choose between the following two gambles:

- A The reward is 500,000 with certainty.
- B The reward is 2,500,000 with probability 0.10. It is 500,000 with probability 0.89, and 0 with probability 0.01.

Example 8

Choose between the following two gambles:

- A The reward is 500,000 with probability 0.11, or 0 with probability 0.89.
- B The reward is: 2,500,000 with probability 0.1, or 0 with probability 0.9.

Monetary rewards

Example 8

Choose between the following two gambles:

- A The reward is 500,000 with certainty.
- B The reward is 2,500,000 with probability 0.10. It is 500,000 with probability 0.89, and 0 with probability 0.01.

Example 9

Choose between the following two gambles:

- A The reward is 500,000 with probability 0.11, or 0 with probability 0.89.
- B The reward is: 2,500,000 with probability 0.1, or 0 with probability 0.9.

Exercise 2 (Is the following statement true or false?)

For any finite U, if gamble A is preferred in the first example, gamble A must also be preferred in the second example.

<ロト <回ト < 臣ト < 臣ト

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

How much are you willing to pay, to play this game once?

- **A** 0
- B 1-2
- C Between 2 and 10?
- D Between 10 and 1000?
- E More than 1000?

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

• The probability to stop at round *n* is 2^{-n} .

< ロト < 回 > < 回 > < 回 >

A simple game [Bernoulli, 1713]

- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

- The probability to stop at round n is 2^{-n} .
- Thus, the expected monetary gain of the game is

$$\sum_{n=1}^{\infty} 2^n 2^{-n} = \infty.$$

Sar

< ロト < 回 > < 回 > < 回 >

A simple game [Bernoulli, 1713]

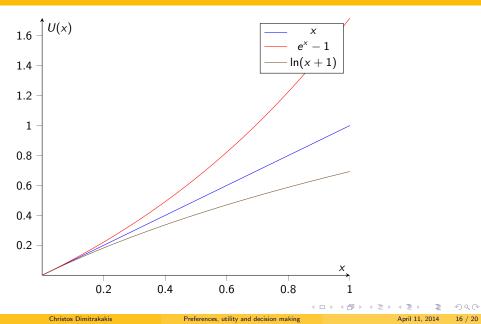
- A fair coin is tossed until a head is obtained.
- If the first head is obtained on the *n*-th toss, our reward will be 2^n currency units.

- The probability to stop at round n is 2^{-n} .
- Thus, the expected monetary gain of the game is

$$\sum_{n=1}^{\infty} 2^n 2^{-n} = \infty.$$

■ If your utility function were linear you'd be willing to pay any amount to play.

Concave versus convex functions



Convex functions

Definition 10

A function g is convex on A if, for any points $x, y \in A$, and any $\alpha \in [0, 1]$:

$$\alpha g(x) + (1 - \alpha)g(y) \ge g[\alpha x + (1 - \alpha)y]$$

Theorem 11 (Jensen's inequality)

If g is convex on S and $x \in S$ with measure P(A) = 1 and $\mathbb{E}(x)$ and $\mathbb{E}[g(x)]$ exist, then:

$$\mathbb{E}[g(x)] \ge g[\mathbb{E}(x)]. \tag{2.4}$$

イロト イヨト イヨト イヨト

Example 12

If the utility function is convex, then we choose a gamble giving a random gain x rather than one giving a fixed gain $\mathbb{E}(x)$. Thus, a convex utility function implies risk-taking.

Concave functions

Definition 13

A function g is concave on S if, for any points $x, y \in S$, and any $\alpha \in [0, 1]$:

$$\alpha g(x) + (1 - \alpha)g(y) \le g[\alpha x + (1 - \alpha)y]$$

Example 14

If the utility function is concave, then we choose a gamble giving a fixed gain $\mathbb{E}[X]$ rather than one giving a random gain X. Consequently, a concave utility function implies risk aversion.

The act of buying insurance can be related to concavity of our utility function. Let d be the insurance cost, h our insurance cover and ϵ the probability of needing the cover.

Exercise 3

Assume that $U(x) = \ln(C + x)$. C can be seen as the amount of credit that we can sustain before becoming ruined.

- If $\epsilon > 0$, h > C, how high a premium d are we willing to pay?
- What if h = (1 p)C, with $p \in (0, 1)$?

The act of buying insurance can be related to concavity of our utility function. Let *d* be the insurance cost, *h* our insurance cover and ϵ the probability of needing the cover. Then we are going to buy insurance if the utility of losing *d* with certainty is greater than the utility of losing -h with probability ϵ .

Exercise 3

Assume that $U(x) = \ln(C + x)$. C can be seen as the amount of credit that we can sustain before becoming ruined.

- If $\epsilon > 0$, h > C, how high a premium d are we willing to pay?
- What if h = (1 p)C, with $p \in (0, 1)$?

The act of buying insurance can be related to concavity of our utility function. Let *d* be the insurance cost, *h* our insurance cover and ϵ the probability of needing the cover. Then we are going to buy insurance if the utility of losing *d* with certainty is greater than the utility of losing -h with probability ϵ .

$$U(-d) > \epsilon U(-h) + (1-\epsilon)U(0).$$
(2.5)

Exercise 3

Assume that $U(x) = \ln(C + x)$. C can be seen as the amount of credit that we can sustain before becoming ruined.

- If $\epsilon > 0$, h > C, how high a premium d are we willing to pay?
- What if h = (1 p)C, with $p \in (0, 1)$?

The act of buying insurance can be related to concavity of our utility function. Let *d* be the insurance cost, *h* our insurance cover and ϵ the probability of needing the cover. Then we are going to buy insurance if the utility of losing *d* with certainty is greater than the utility of losing -h with probability ϵ .

$$U(-d) > \epsilon U(-h) + (1-\epsilon)U(0). \tag{2.5}$$

The company has a linear utility, and fixes the premium d high enough for

$$d > \epsilon h. \tag{2.6}$$

<ロ> (日) (日) (日) (日) (日)

Exercise 3

Assume that $U(x) = \ln(C + x)$. C can be seen as the amount of credit that we can sustain before becoming ruined.

- If $\epsilon > 0$, h > C, how high a premium d are we willing to pay?
- What if h = (1 p)C, with $p \in (0, 1)$?

Summary

- We can subjectively indicate which events we think are more likely.
- Using relative likelihoods, we can define a subjective probability *P* for all events.
- Similarly, we can subjectively indicate preferences for rewards.
- We can determine a utility function for all rewards.
- Hypothesis: we prefer the probability distribution (over rewards) with the highest expected utility.
- Concave utility functions imply risk aversion (and convex, risk-taking).

Summary

- [1] Morris H. DeGroot. Optimal Statistical Decisions. John Wiley & Sons, 1970.
- [2] Milton Friedman and Leonard J. Savage. The expected-utility hypothesis and the measurability of utility. *The Journal of Political Economy*, 60(6):463, 1952.
- [3] Leonard J. Savage. The Foundations of Statistics. Dover Publications, 1972.