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1 Introduction

2 Types of probability
Relative likelihood
Subjective probability assumptions
Conditional likelihoods
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Introduction

Goals of today’s (?) lecture

Subjective probability

Understand the different interpretations of probability.

Refresh the mathematical properties of probability.

Understand how to use probability to represent your beliefs.

Show why probability is the right thing for this job.

See how you can update your beliefs using probability.

Utility

Understand the concept of preferences.

See how utility can be used to formalize preferences.

Show how we can combine utility and probability to deal with decision making under
uncertainty.
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Introduction

The decision-theoretic foundations of artificial intelligence.

Probability: how likely things are?

Utility: which things do we want?

Interpretations of probability

Objective: inherent randomness.

Frequentist: long-term averages.

Algorithmic: program complexity.

Subjective: uncertainty.

Interpretations of utility

Monetary.

Psychological.

“true” value of things?
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Types of probability

Objective Probability

x

P
θ

Figure : The double slit experiment
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Types of probability

Objective Probability

Figure : The double slit experiment
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Types of probability

Objective Probability

Figure : The double slit experiment
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Types of probability

Algorithmic probability

Consider a binary string x = 101010001011101001010010101.

Consider another string y = 111111111111111111111111111.

Intuitively, do you think that
A x is more likely than y .
B x is as likely as y .
C x is less likely than y .
D The question is meaningless.

m.socrative.com – ai-chalmers-2014

Intuitively, y is “simpler”... perhaps it’s generated by an algorithm! But which
algorithm?

Solomonoff induction

Occam’s razor: Prefer the simplest explanation (algorithm).

Epicurus: Do not throw away any hypothesis (algorithm).

Weigh algorithms according to
Simplicity.
How well they fit the data.
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Types of probability

What about everyday life?
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Types of probability

Subjective probability

Making decisions requires making predictions.

Outcomes of decisions are uncertain.

How can we represent this uncertainty?

Subjective probability

Describe which events we think are more likely.

We quantify this with probability.

Why probability?

Quantifies uncertainty in a “natural” way.

A framework for drawing conclusions from data.

Computationally convenient for decision making.
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Types of probability

Events as sets

...

Everything (S)

. Patient state

Example 1 (Experiment: give medication to a patient.)

Does the patient recover?

Does the medication have side-effects?
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Types of probability

Events as sets

..A1

.

Recovery

..

Everything (S)

. Patient state

Example 1 (Experiment: give medication to a patient.)

Does the patient recover?

Does the medication have side-effects?
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Types of probability

Events as sets

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

. Patient state

Example 1 (Experiment: give medication to a patient.)
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Does the medication have side-effects?
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Types of probability

Events as sets

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

.

ω

. Patient state

Example 1 (Experiment: give medication to a patient.)

Does the patient recover?

Does the medication have side-effects?
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Types of probability Relative likelihood

How likely are events

The relative likelihood of two events A and B

Do you think A is more likely than B? Write A ≻ B.

Do you think A is less likely than B? Write A ≺ B.

Do you think A is as likely as B? Write A ≂ B.

We also use ≿ and ≾ for at least as likely as and for no more likely than.

Functions on sets

A function P is said to agree with a relation A ≾ B, if it has the property that:
P(A) ≤ P(B) if and only if A ≾ B.

We want such a function for all events of interest.
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Types of probability Relative likelihood

Which events should we look at?

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

Definition 2 (σ-field on S)
A family F of sets, s.t. ∀A ∈ F , A ⊂ S, is
called a σ-field on S if and only if

1 S ∈ F
2 if A ∈ F , then A∁ ∈ F .

3 If Ai ∈ F for i = 1, 2, . . . then∪∞
i=1 Ai ∈ F .
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Types of probability Relative likelihood

Which events should we look at?

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

Definition 2 (σ-field on S)
A family F of sets, s.t. ∀A ∈ F , A ⊂ S, is
called a σ-field on S if and only if

1 S ∈ F
2 if A ∈ F , then A∁ ∈ F .

3 If Ai ∈ F for i = 1, 2, . . . then∪∞
i=1 Ai ∈ F .

Exercise 1

Is F =
{
∅,A1,A

∁
1 ,S
}

a σ-field?
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Types of probability Relative likelihood

Which events should we look at?

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

Definition 2 (σ-field on S)
A family F of sets, s.t. ∀A ∈ F , A ⊂ S, is
called a σ-field on S if and only if

1 S ∈ F
2 if A ∈ F , then A∁ ∈ F .

3 If Ai ∈ F for i = 1, 2, . . . then∪∞
i=1 Ai ∈ F .

Exercise 1

Is F = {∅,A1,A2,S} a σ-field?
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Types of probability Relative likelihood

Which events should we look at?

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

Definition 2 (σ-field on S)
A family F of sets, s.t. ∀A ∈ F , A ⊂ S, is
called a σ-field on S if and only if

1 S ∈ F
2 if A ∈ F , then A∁ ∈ F .

3 If Ai ∈ F for i = 1, 2, . . . then∪∞
i=1 Ai ∈ F .

Example 3

The σ-field generated by {∅,A1,A2,S} is:

F = {A1,A
∁
1 ,A2,A

∁
2 ,

A1 ∩ A2, (A1 ∩ A2)
∁,A1 ∪ A2, (A1 ∪ A2)

∁,A2,

A2\A1,A1\A2, (A2\A1)
∁, (A1\A2)

∁, ∅,S}.
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Types of probability Subjective probability assumptions

Subjective probability assumptions I

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption 1 (SP1)

For any events A,B, one of the following must hold: A ≻ B, A ≺ B, A ≂ B.

Assumption 2 (SP2)

Let A = A1 ∪ A2, B = B1 ∪ B2 with A1 ∩ A2 = B1 ∩ B2 = ∅. If Ai ≾ Bi then A ≾ B.

Assumption 3 (SP3)

For any event A, we have: ∅ ≾ A For the certain event S, we have: ∅ ≺ S.
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Types of probability Subjective probability assumptions

Subjective probability assumptions I

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption 1 (SP1)

For any events A,B, one of the following must hold: A ≻ B, A ≺ B, A ≂ B.

It is always possible to say whether one event is more likely than the other.

Assumption 2 (SP2)

Let A = A1 ∪ A2, B = B1 ∪ B2 with A1 ∩ A2 = B1 ∩ B2 = ∅. If Ai ≾ Bi then A ≾ B.

Assumption 3 (SP3)

For any event A, we have: ∅ ≾ A For the certain event S, we have: ∅ ≺ S.
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Types of probability Subjective probability assumptions

Subjective probability assumptions I

Our beliefs must be consistent. This can be achieved if they satisfy some assumptions:

Assumption 1 (SP1)

For any events A,B, one of the following must hold: A ≻ B, A ≺ B, A ≂ B.

Assumption 2 (SP2)

Let A = A1 ∪ A2, B = B1 ∪ B2 with A1 ∩ A2 = B1 ∩ B2 = ∅. If Ai ≾ Bi then A ≾ B.

If we can split A,B in such a way that each part of A is less likely than its counterpart in
B, then A is less likely than B.

Assumption 3 (SP3)

For any event A, we have: ∅ ≾ A For the certain event S, we have: ∅ ≺ S.
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Types of probability Subjective probability assumptions

Resulting properties of relative likelihoods

Theorem 4 (Transitivity)

If A,B,D such that A ≾ B and B ≾ D, then A ≾ D.

Theorem 5 (Complement)

For any A,B: A ≾ B iff A∁ ≿ B∁.

Theorem 6 (Fundamental property of relative likelihoods)

If A ⊂ B then A ≾ B. Furthermore, ∅ ≾ A ≾ S for any event A.
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Types of probability Subjective probability assumptions

What functions can agree with a relative likelihood?

For any events P(A) > P(B), P(A) < P(B) or P(A) = P(B).

If Ai , Bi are disjoint sets, ∀i : P(Ai ) ≤ P(Bi ) ⇒ P(A) ≤ P(B).

For any A, P(∅) ≤ P(A) and P(∅) < P(S).
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Types of probability Subjective probability assumptions

Measure theory primer

r r rr rrr rrr r

r

C

A B

Figure : A fashionable apartment

Area

A: 4× 5 = 20m2.

B: 6× 4 = 24m2.

C: 2× 5 = 10m2.

Measure the sets: F = {∅,A,B,C ,A ∪ B,A ∪ C ,B ∪ C ,A ∪ B ∪ C}.
Note that all those measures have an additive property.
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Types of probability Subjective probability assumptions

Measure theory primer

r r rr rrr rrr r

r

C

A B

Figure : A fashionable apartment

Coins on the floor

A: 3.

B: 4

C: 5.

Measure the sets: F = {∅,A,B,C ,A ∪ B,A ∪ C ,B ∪ C ,A ∪ B ∪ C}.
Note that all those measures have an additive property.
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Types of probability Subjective probability assumptions

Measure theory primer

r r rr rrr rrr r

r

C

A B

Figure : A fashionable apartment

Length of red carpet

A: 0m

B: 0.5m

C: 4.5m.

Measure the sets: F = {∅,A,B,C ,A ∪ B,A ∪ C ,B ∪ C ,A ∪ B ∪ C}.
Note that all those measures have an additive property.
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Types of probability Subjective probability assumptions

Measure and probability

Definition 7 (Measure)

A measure λ on (S,F) is a function λ : F → R+ such that

1 λ(∅) = 0.

2 λ(A) ≥ 0 for any A ∈ F .

3 For any collection of subsets A1,A2, . . . with Ai ∈ F and Ai ∩ Aj = ∅.

λ

(
∞∪
i=1

Ai

)
=

∞∑
i=1

λ(Ai ) (2.1)
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Types of probability Subjective probability assumptions

Measure and probability

Definition 7 (Probability measure)

A probability measure P on (S,F) is a function P : F → [0, 1] such that:

1 P(S) = 1

2 P(∅) = 0

3 P(A) ≥ 0 for any A ∈ F .

4 If A1,A2, . . . are disjoint then

P

(
∞∪
i=1

Ai

)
=

∞∑
i=1

P(Ai ) (union)

(S ,F ,P) is called a probability space.

So, probability is just a special type of measure.
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Types of probability Subjective probability assumptions

Logical interpretation: Mutually exclusive and independent events

..A1

.

Recovery

. A2

.

Side effects

..

Everything (S)

Definition 8 (Mutually exclusive events)

If A,B are disjoint (i.e. A ∩ B = ∅) then they are mutually exclusive. Since P is a
measure,

P(A ∪ B) = P(A) + P(B).
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Types of probability Subjective probability assumptions

Logical interpretation: Mutually exclusive and independent events

...

Everything (S)

.

A1

.
Recovery

. A2

.

Side effects

Definition 8 (Independent events)

Events A,B are independent iff

P(A ∩ B) = P(A)P(B). (2.1)

Thus, the probability of either A occuring does not depend on whether B occurs.
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Types of probability Subjective probability assumptions

Logical interpretation: Mutually exclusive and independent events

Definition 8 (Mutually exclusive events)

If A,B are disjoint (i.e. A ∩ B = ∅) then they are mutually exclusive. Since P is a
measure,

P(A ∪ B) = P(A) + P(B).

Definition 9 (Independent events)

Events A,B are independent iff

P(A ∩ B) = P(A)P(B). (2.1)

Thus, the probability of either A occuring does not depend on whether B occurs.

Exercise 1

Can mutually exclusive events be independent?

You can think of A ∩ B as A ∧ B, i.e. “A and B”.
You can think of A ∪ B as A ∨ B, i.e. “A or B”.
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Types of probability Subjective probability assumptions

A probability measure can satisfy our assumptions

Exercise 2

(i) For any events P(A) > P(B), P(A) < P(B) or P(A) = P(B).

(ii) If Ai , Bi are partitions of A,B, ∀iP(Ai ) ≤ P(Bi ) ⇒ P(A) ≤ P(B).

(iii) For any A, P(∅) ≤ P(A) and P(∅) < P(S)
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Types of probability Subjective probability assumptions

From events to variables

Let ω ∼ P denote that ω is selected according to P.

Events as indicator functions

Until now we were just considering simple events: where ω ∈ A. Each event A can be
seen as a functions ⊮A : S → {0, 1}

1A(ω) =

{
1, ω ∈ A

0, otherwise

Then the probability that ω ∈ A is simply P(A).

Definition 10 (Random variable)

However, we can also define some arbitrary other function x : S → R. This function is
called a random variable, because it is a variable whose value depends on the random
outcome ω.

Example 11 (Functions of the patient state)

Temperature, blood pressure, heart rate, . . .
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Types of probability Subjective probability assumptions

Probabilities and expectations of random variables

Given a random variable x : S → R, we can naturally ask things such as what value x
takes on average:

Definition 12 (Expectation of a random variable)

If ω ∼ P, then:

EP(x) ≜
∑
ω∈S

x(ω)P(ω) (discrete case)

EP(x) ≜
∫
S
x(ω) dP(ω)

(general case)

(For the discrete case, it is usual to write P(ω) to mean P({ω})).

Definition 13 (Distribution of a random variable)

If ω ∼ P, then x ∼ Px with:

Px(A) ≜
∑
ω∈S

1A(x(ω))P(ω) (discrete case)
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Types of probability Subjective probability assumptions

Probabilities and expectations of random variables

Given a random variable x : S → R, we can naturally ask things such as what value x
takes on average:

Definition 12 (Expectation of a random variable)

If ω ∼ P, then:

EP(x) ≜
∑
ω∈S

x(ω)P(ω) (discrete case)

EP(x) ≜
∫
S
x(ω) dP(ω) (general case)

(For the discrete case, it is usual to write P(ω) to mean P({ω})).

Definition 13 (Distribution of a random variable)

If ω ∼ P, then x ∼ Px with:

Px(A) ≜
∑
ω∈S

1A(x(ω))P(ω) (discrete case)

Christos Dimitrakakis Subjective probability and utility April 11, 2014 20 / 32



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Types of probability Subjective probability assumptions

Probabilities and expectations of random variables

Given a random variable x : S → R, we can naturally ask things such as what value x
takes on average:

Definition 12 (Expectation of a random variable)

If ω ∼ P, then:

EP(x) ≜
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∫
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(general case)

(For the discrete case, it is usual to write P(ω) to mean P({ω})).
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Types of probability Subjective probability assumptions

Recap of fundamental probability

Subjective probability can be used to represent uncertainty.

Events can be represented as sets in a space of outcomes S.
The set of all possible events F is a field in S.
Subjective relative likelihoods of events can be represented by probabilities.

Probabilities are measures, e.g. similar to area, length, mass, etc.

Mutually exclusive events are disjoint.

Independent events have product joint probability.

Random variables are simply functions on outcomes.

The expectation of a r.v. is the sum of its values for each outcome, weighed by the
outcome’s probability.

Christos Dimitrakakis Subjective probability and utility April 11, 2014 21 / 32



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Types of probability Conditional likelihoods

Conditional likelihood

A likelihood relation encodes our prior opinions.

Sometimes we need to take into account evidence.

For example, ordinarily we may think that A ≾ B.

However, we may have additional information D . . .

Example 14

Say that A is the event that it rains in Gothenburg tomorrow.

Clearly, A ≿ A∁.

Let D denote a good forecast!

I personally believe that (A | D) ≾ (A∁ | D).
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Conditional likelihood

A likelihood relation encodes our prior opinions.
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Conditional likelihood

A likelihood relation encodes our prior opinions.
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Conditional likelihood

A likelihood relation encodes our prior opinions.
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Types of probability Conditional likelihoods

Conditional likelihood

A likelihood relation encodes our prior opinions.

Sometimes we need to take into account evidence.

For example, ordinarily we may think that A ≾ B.

However, we may have additional information D . . .

Example 14

Say that A is the event that it rains in Gothenburg tomorrow.
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Types of probability Conditional likelihoods

Conditional likelihoods

Assumption 4 (CP)

For any events A,B,D,

(A | D) ≾ (B | D) iff A ∩ D ≾ B ∩ D.

Theorem 15

If a relation ≾ satisfies assumptions SP1 to SP5 and CP, then P is the unique probability
distribution such that:
For any A,B,D such that P(D) > 0,

(A | D) ≾ (B | D) iff P(A | D) ≤ P(B | D)

Definition 16 (Conditional probability)

P(A | D) ≜ P(A ∩ D)

P(D)
(2.2)
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Types of probability Conditional likelihoods

A simple exercise in updating beliefs

Forecaster Saturday Sunday Monday Tuesday
A Rain Rain Rain Rain
B Sun Rain Rain Sun
C Clouds Clouds Rain Storms
D Sun Clouds Rain Clouds
E Clouds Rain Clouds Sun

Outcome

Clouds Rain Rain Sun

Table : Five weather forecasters
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Types of probability Conditional likelihoods

A simple exercise in updating beliefs

Forecaster Saturday Sunday Monday Tuesday
A Rain Rain Rain Rain
B Sun Rain Rain Sun
C Clouds Clouds Rain Storms
D Sun Clouds Rain Clouds
E Clouds Rain Clouds Sun

Outcome Clouds

Rain Rain Sun

Table : Five weather forecasters
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Types of probability Conditional likelihoods

A simple exercise in updating beliefs

Forecaster Saturday Sunday Monday Tuesday
A Rain Rain Rain Rain
B Sun Rain Rain Sun
C Clouds Clouds Rain Storms
D Sun Clouds Rain Clouds
E Clouds Rain Clouds Sun

Outcome Clouds Rain

Rain Sun

Table : Five weather forecasters
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Types of probability Conditional likelihoods

A simple exercise in updating beliefs

Forecaster Saturday Sunday Monday Tuesday
A Rain Rain Rain Rain
B Sun Rain Rain Sun
C Clouds Clouds Rain Storms
D Sun Clouds Rain Clouds
E Clouds Rain Clouds Sun

Outcome Clouds Rain Rain

Sun

Table : Five weather forecasters
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Types of probability Conditional likelihoods

A simple exercise in updating beliefs

Forecaster Saturday Sunday Monday Tuesday
A Rain Rain Rain Rain
B Sun Rain Rain Sun
C Clouds Clouds Rain Storms
D Sun Clouds Rain Clouds
E Clouds Rain Clouds Sun

Outcome Clouds Rain Rain Sun

Table : Five weather forecasters
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Types of probability Conditional likelihoods

Updating beliefs

Theorem 17 (Bayes’ theorem)

Let A1,A2, . . . be a (possibly infinite) sequence of disjoint events such that
∪n

i=1 Ai = S
and P(Ai ) > 0 for all i . Let B be another event with P(B) > 0. Then

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

(2.3)

Proof.

By definition, P(Ai | B) = P(Ai ∩ B)/P(B), and P(Ai ∩ B) = P(B | Ai )P(Ai ), so:

P(Ai | B) =
P(B | Ai )P(Ai )

P(B)
, (2.4)

As
∪n

i=1 Ai = S, we have B =
∪n

j=1(B ∩ Aj). Since Ai are disjoint, so are B ∩ Ai . As P
is a probability, the union property and an application of 2.4 gives

P(B) = P

(
n∪

j=1

(B ∩ Aj)

)
=

n∑
j=1

P(B ∩ Aj) =
n∑

j=1

P(B | Aj)P(Aj).
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Types of probability Conditional likelihoods

Updating beliefs

Theorem 17 (Bayes’ theorem)

Let A1,A2, . . . be a (possibly infinite) sequence of disjoint events such that
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Types of probability Conditional likelihoods

Updating beliefs
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Types of probability Conditional likelihoods

Updating beliefs

Theorem 17 (Bayes’ theorem)

Let A1,A2, . . . be a (possibly infinite) sequence of disjoint events such that
∪n

i=1 Ai = S
and P(Ai ) > 0 for all i . Let B be another event with P(B) > 0. Then

P(Ai | B) =
P(B | Ai )P(Ai )∑n
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(2.3)

Proof.
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∪n

j=1(B ∩ Aj). Since Ai are disjoint, so are B ∩ Ai .

As P
is a probability, the union property and an application of 2.4 gives

P(B) = P

(
n∪

j=1

(B ∩ Aj)

)
=

n∑
j=1

P(B ∩ Aj) =
n∑

j=1

P(B | Aj)P(Aj).
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Types of probability Conditional likelihoods

Updating beliefs

Theorem 17 (Bayes’ theorem)

Let A1,A2, . . . be a (possibly infinite) sequence of disjoint events such that
∪n

i=1 Ai = S
and P(Ai ) > 0 for all i . Let B be another event with P(B) > 0. Then

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

(2.3)

Proof.

By definition, P(Ai | B) = P(Ai ∩ B)/P(B), and P(Ai ∩ B) = P(B | Ai )P(Ai ), so:

P(Ai | B) =
P(B | Ai )P(Ai )

P(B)
, (2.4)

As
∪n

i=1 Ai = S, we have B =
∪n

j=1(B ∩ Aj). Since Ai are disjoint, so are B ∩ Ai . As P
is a probability, the union property and an application of 2.4 gives

P(B) = P

(
n∪

j=1

(B ∩ Aj)

)
=

n∑
j=1

P(B ∩ Aj) =
n∑

j=1

P(B | Aj)P(Aj).
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Types of probability Conditional likelihoods

Updating beliefs: addendum

Interpreting Bayes’s theorem

P(A | B) =
P(B | A)P(A)

P(B)

P(A): our prior belief that hypothesis A is true (use Occam’s razor!)

P(B | A): how much does hypothesis A agree with the evidence B?

P(B): probability of the evidence B according to all hypotheses (Epicurean principle)

P(A | B): our posterior belief that hypothesis A is true given evidence B.

Exercise 3

Recall that

P(A | B) ≜ P(A ∩ B)

P(B)

is only a definition. Give plausible alternatives.
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Types of probability Conditional likelihoods

Updating beliefs

Consider the forecasters actually giving probabilities for rain.

Forecaster Saturday Sunday Monday Tuesday
A1 60% 70% 80% 90%
A2 10% 50% 60% 20%
A3 20% 25% 40% 100%
A4 10% 15% 30% 25%
A5 30% 40% 35% 10%

Outcome

Clouds Rain Rain Sun

Table : Five weather forecasters

Let P(Ai ) = 1/5 be our prior belief that Ai is correct. Then:
A1 A2 A3 A4 A5
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Types of probability Conditional likelihoods

Updating beliefs

Consider the forecasters actually giving probabilities for rain.

Forecaster Saturday Sunday Monday Tuesday
A1 60% 70% 80% 90%
A2 10% 50% 60% 20%
A3 20% 25% 40% 100%
A4 10% 15% 30% 25%
A5 30% 40% 35% 10%

Outcome Clouds

Rain Rain Sun

Table : Five weather forecasters

Let P(Ai ) = 1/5 be our prior belief that Ai is correct. Then:
A1 A2 A3 A4 A5

0.11 0.25 0.22 0.25 0.19
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Types of probability Conditional likelihoods

Updating beliefs

Consider the forecasters actually giving probabilities for rain.

Forecaster Saturday Sunday Monday Tuesday
A1 60% 70% 80% 90%
A2 10% 50% 60% 20%
A3 20% 25% 40% 100%
A4 10% 15% 30% 25%
A5 30% 40% 35% 10%

Outcome Clouds Rain

Rain Sun

Table : Five weather forecasters

Let P(Ai ) = 1/5 be our prior belief that Ai is correct. Then:
A1 A2 A3 A4 A5

0.35 0.25 0.13 0.08 0.2
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Types of probability Conditional likelihoods

Updating beliefs

Consider the forecasters actually giving probabilities for rain.

Forecaster Saturday Sunday Monday Tuesday
A1 60% 70% 80% 90%
A2 10% 50% 60% 20%
A3 20% 25% 40% 100%
A4 10% 15% 30% 25%
A5 30% 40% 35% 10%

Outcome Clouds Rain Rain

Sun

Table : Five weather forecasters

Let P(Ai ) = 1/5 be our prior belief that Ai is correct. Then:
A1 A2 A3 A4 A5

0.33 0.25 0.17 0.13 0.15
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Types of probability Conditional likelihoods

Updating beliefs

Consider the forecasters actually giving probabilities for rain.

Forecaster Saturday Sunday Monday Tuesday
A1 60% 70% 80% 90%
A2 10% 50% 60% 20%
A3 20% 25% 40% 100%
A4 10% 15% 30% 25%
A5 30% 40% 35% 10%

Outcome Clouds Rain Rain Sun

Table : Five weather forecasters

Let P(Ai ) = 1/5 be our prior belief that Ai is correct. Then:
A1 A2 A3 A4 A5

0.04 0.32 0 0.30 0.36
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Types of probability Conditional likelihoods

Simplified notation and capturing dependencies

Consider random variables xi : S → Si , i = 1, . . . , n. As a shorthand, especially in
computer science, we may write their joint distribution as

P(x1, . . . , xn),

instead of
Px1,...,xn (·),

as is usually done in statistics.
Graphs can be used to capture independence between these variables. For example:

..x1. x2. x3

Means that P(x3, x2, x1) = P(x3 | x2)P(x2 | x1)P(x1)
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Types of probability Conditional likelihoods

Marginalisation (variable elimination)

Consider the example network P(x3, x2, x1) = P(x3 | x2)P(x2 | x1)P(x1).

..x1. x2. x3

This means that to express the joint distribution of the variables xi (ω) we only need to
model the conditional distributions P(xi | xj).

Inference via marginalisation

What is the distribution of x3, ignoring the other variables?

P(x3) =
∑
x1∈S1

∑
x2∈S2

P(x1, x2, x3). =
∑
x1∈S1

∑
x2∈S2

P(x3 | x2)P(x2 | x1)P(x1). (2.5)

This follows from the disjoint property of measures, as illustrated in the proof of Bayes’
theorem.

What is the distribution of x3, given x1?

P(x3 | x1) =
∑
x2∈S2

P(x2, x3 | x1) =
∑
x2∈S2

P(x3 | x2)P(x2 | x1) (2.6)
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Types of probability Conditional likelihoods

Marginalisation (variable elimination)

Consider the example network P(x3, x2, x1) = P(x3 | x2)P(x2 | x1)P(x1).

..x1. x2. x3

This means that to express the joint distribution of the variables xi (ω) we only need to
model the conditional distributions P(xi | xj).

Inference via marginalisation

What is the distribution of x3, ignoring the other variables?

P(x3) =
∑
x1∈S1

∑
x2∈S2

P(x1, x2, x3). =
∑
x1∈S1

∑
x2∈S2

P(x3 | x2)P(x2 | x1)P(x1). (2.5)

This follows from the disjoint property of measures, as illustrated in the proof of Bayes’
theorem.

What is the distribution of x3, given x1?

P(x3 | x1) =
∑
x2∈S2

P(x2, x3 | x1) =
∑
x2∈S2

P(x3 | x2)P(x2 | x1) (2.6)
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Types of probability Conditional likelihoods

Marginalisation (variable elimination)

Consider the example network P(x3, x2, x1) = P(x3 | x2)P(x2 | x1)P(x1).

..x1. x2. x3

This means that to express the joint distribution of the variables xi (ω) we only need to
model the conditional distributions P(xi | xj).

Inference via marginalisation

What is the distribution of x3, ignoring the other variables?

P(x3) =
∑
x1∈S1

∑
x2∈S2

P(x1, x2, x3). =
∑
x1∈S1

∑
x2∈S2

P(x3 | x2)P(x2 | x1)P(x1). (2.5)

This follows from the disjoint property of measures, as illustrated in the proof of Bayes’
theorem. What is the distribution of x3, given x1?

P(x3 | x1) =
∑
x2∈S2

P(x2, x3 | x1) =
∑
x2∈S2

P(x3 | x2)P(x2 | x1) (2.6)
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Types of probability Conditional likelihoods

Application to Bayesian inference

Consider now that you have a set of models {µi | i = 1, . . .}, each making a different
prediction for tomorrow’s weather xt+1, given the weather in the past x1, . . . , xt .

P(xt+1 | x1, . . . , xt , µi )

Let P(µi ) be your prior probability on each model. Then the marginal probability is going
to be

P(xt+1) =
∑
i

P(xt+1 | µi )P(µi ).

Given some weather observations, you can now estimate a posterior distribution

P(µi | x1, . . . , xt) =
P(x1, . . . , xt | µi )P(µi )∑
j P(x1, . . . , xt | µi )P(µj)

You can now calculate a new marginal probability for the weather,

P(xt+1 | x1, . . . , xt) =
∑
i

P(xt+1 | x1, . . . , xt , µi )P(µi | x1, . . . , xt).
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Types of probability Conditional likelihoods

Exercise

Abdul Alhazred claims that he is psychic and can always predict a coin toss.
You use a fair coin, such that the probability of it coming heads is 1/2. You throw the
coin 4 times, and AA guesses correctly all four times.
If P(A) = 2−16 is your prior belief that AA is a psychic, then what is your posterior belief
(approximately), given that AA has guessed correctly?
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Types of probability Conditional likelihoods

Recap of conditional likelihood and probability

Conditional likelihood represents the likelihood of an event given another event.

If A is a hypothesis, and B is a predicted event, (A | B) is the likelihood of the event
under hypothesis A.

Conditional probabilities P(A | B) can be defined analogously to normal probabilities.

This gives us a numerical procedure for updating our beliefs about which hypotheses
are true.

This is easy to perform for finite numbers of events and hypotheses.

Finally, the conditional structure of a problem can be captured via a graph.
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