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1 Subjective probability

In order to make decisions, we need to be able to make predictions about the
possible outcomes of each decision. Usually, we have uncertainty about what
those outcomes are. This can be due to stochasticity, which is frequently used to
model games of chance and inherently unpredictable physical phenomena. It can
also be due to partial information, a characteristic of many natural problems.
For example, it might be hard to guess at any one moment how much change
you have in your wallet, whether you will be able to catch the next bus, or to
remember where you left your keys.

In either case, this uncertainty can be expressed as a subjective belief. This
does not have to correspond to reality. For example, some people believe, quite
inaccurately, that if a coin comes up tails for a long time, it is quite likely to
come up heads very soon. Or, you might quite happily believe your keys are in
your pocket, only to realise that you left them at home as soon you arrive at
the office.

In this book, we assume the view that subjective beliefs can be modelled as
probabilities. This allows us to treat uncertainty due to stochasticity and due to
partial information in a unified framework. In doing so, we shall treat each part
of the problem as specifying a space of possible outcomes. What we wish to do
is to find a consistent way of defining probabilities in the space of outcomes.

1.1 Relative likelihood

Let us consider the simple example of guessing whether a tossed coin will come
up head, or tails. Let S be the sample space, and let A ⊂ S be the set of tosses
where the coin comes up heads, and B ⊂ S be the set of tosses where it comes
up tails. Here A ∩B = ∅, but there may be some other events such as the coin
becoming lost, so it does not necessarily hold that A∪B = S. Nevertheless, we
only care about whether A is more likely to occur than B. We can express that
via the concept of relative likelihood:

Definition 1.1. (The relative likelihood of two events A and B)

• If one thinks that A is more likely than B, then we write A ≻ B, or
equivalently B ≺ A.

• If one thinks A is as likely as B, then we write A ≂ B.
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We also use ≿ and ≾ for at least as likely as and for no more likely than.

Let us now speak more generally about the case where we have defined an
appropriate σ-field F on S. Then each element Ai ∈ F will be a subset of
S. Furthermore, we have defined a relative likelihood relation for all elements
Ai ∈ F .1

As we would like to use the language of probability to talk about likelihoods,
we would like to be able to define a probability measure that agrees with our
given relations.

A probability measure P : F → [0, 1] is said to agree with a relation A ≾ B,
if it has the property that: P (A) ≤ P (B) if and only if A ≾ B, for all A,B ∈ F .

Of course, there are many possible measures that can agree with a given
relation. It could even be that a given relational structure is incompatible with
any possible probability measure. For that reason, we shall have to make some
assumptions about relative likelihoods of events.

1.2 Subjective probability assumptions

Our beliefs must be consistent. This can be achieved if they satisfy some as-
sumptions. First of all, it must always be possible to say whether one event is
more likely than the other. Consequently, we are not allowed to claim ignorance.

Assumption 1.1 (SP1). For any pair of events A,B ∈ F , one of the following
must hold: Either A ≻ B, A ≺ B, or A ≂ B.

If we can partition A,B in such a way that each part of A is less likely than
its counterpart in B, then A is less likely than B. For example, suppose that
A1 the event that it rains non-stop between 14:00 and 15:00 tomorrow, A2 the
event that it rains intermittently. Let B1, B2 be the corresponding events for
cloudy weather, and , but no rain during the next hour. If we think that it is
more likely to rain constantly than to be dry and cloudy, and that it is more
likely to rain intermittently than to be sunny, then we must conclude that it is
more likely to rain than not.

Assumption 1.2 (SP2). Let A = A1 ∪ A2, B = B1 ∪ B2 with A1 ∩ A2 =
B1 ∩B2 = ∅. If Ai ≾ Bi for i = 1, 2 then A ≾ B.

We also require the simple technical assumption that any event A ∈ F is at
least as likely as the empty event ∅, which never happens.

Assumption 1.3 (SP3). If S is the certain event, and ∅ never occurs, then:
∅ ≾ A and ∅ ≺ S.

As it turns out, these assumptions are sufficient for proving the following
theorems [1]. The first theorem tells us that our belief must be consistent with
respect to transitivity.

Theorem 1.1 (Transitivity). For all events A,B,D, if A ≾ B and B ≾ D,
then A ≾ D.

1More formally, we can define three classes: C≻, C≺, C≂ ⊂ F2 such that a pair (Ai, Aj) ∈
CR if an only if it satisfies the relation AiRAj , where R ∈ {≻,≺,≂}. It is easy to see that
the three classes form a partition of F2.



CS 709: Decision Making under Uncertainty 3

The second theorem says that if two events have a certain relation, then
their negations have the converse relation.

Theorem 1.2 (Complement). For any A,B: A ≾ B iff A∁ ≻ B∁.

Finally, note that if A ⊂ B, then it must be the case that whenever A
happens, B must happen and hence B must be at least as likely as A. This is
demonstrated in the following theorem.

Theorem 1.3 (Fundamental property of relative likelihoods). If A ⊂ B then
A ≾ B. Furthermore, ∅ ≾ A ≾ S for any event A.

Since we are dealing with σ-fields, we need to introduce properties for infinite
sequences of events. While these are not necessary if the field F is finite, it is
good to include them for generality.

Assumption 1.4 (SP4). If A1 ⊃ A2 ⊃ · · · is a decreasing sequence of events
in F and B ∈ F is such that Ai ≿ B for all i, then

∩∞
i=1 Ai ≿ B.

As a consequence, we obtain the following dual theorem:

Theorem 1.4. If A1 ⊂ A2 ⊂ · · · is an increasing sequence of events in F and
B ∈ F is such that Ai ≾ B for all i, then

∪∞
i=1 Ai ≾ B.

We are now able to state a theorem for the unions of infinite sequences of
disjoint events.

Theorem 1.5. If (Ai)
∞
i=1 and (Bi)

∞
i=1 are infinite sequences of disjoint events

in F such that Ai ≾ Bi for all i, then
∪∞

i=1 Ai ≾
∪∞

i=1 Bi.

Exercise 1. Here we prove that a probability measure P always satisfies the
stipulated assumptions.

(i) For any events P (A) > P (B), P (A) < P (B) or P (A) = P (B).

(ii) If Ai, Bi are partitions of A,B, ∀iP (Ai) ≤ P (Bi) ⇒ P (A) ≤ P (B).

(iii) For any A, P (∅) ≤ P (A) and P (∅) < P (S)

Solution. Part (i) is trivial, as P : F → [0, 1]. Part (ii) follows from P (A) =
P (

∪
i Ai) =

∑
i P (Ai) ≤

∑
i P (Bi) = P (B). Part (iiI) P (∅) = 0, P (A) ≥ 0.

Also, P (S) = 1.

1.3 Assigning unique probabilities

In many cases, and particularly when F is a finite field, there is a large number
of probability distributions agreeing with our relative likelihoods.

How can we assign probabilities to events in an unambiguous manner?

Example 1.1. Consider F =
{
∅, A,A∁,S

}
and say A ≻ A∁. Consequently,

P (A) > 1/2. But this is insufficient for assigning a specific value to P (A).

Let A be an interval on the real line, with length λ(A).
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Definition 1.2 (Uniform distribution). x : S → [0, 1] has a uniform distribution
on [0, 1] if, for any subintervals A,B of [0, 1],

(x ∈ A) ≾ (x ∈ B) iff λ(A) ≤ λ(B)

This means that any larger interval is more likely than any smaller interval.
Now we shall connect the uniform distribution to the original sample space S
by assuming that there is some function with uniform distribution.

Assumption 1.5 (SP5). There exists a random variable x : S → [0, 1] with a
uniform distribution in [0, 1].

Constructing the probability distribution

We can now use the uniform distribution to create a unique probability
measure that agrees with our likelihood relation. First, we have to map each
event in S to an equivalent event in [0, 1].

Theorem 1.6 (Equivalent event). For any event A ∈ F , there exists some
α ∈ [0, 1] such that A ≂ (X ∈ [0, α]).

This means that we can now define the probability of an event A by matching
it to a specific equivalent event on [0, 1].

Definition 1.3 (The probability of A). Given any event A, define P (A) to be
the α with A ≂ (X ∈ [0, α]).

Hence

A ≂ (X ∈ [0, P (A)]).

The above is sufficient to show the following theorem.

Theorem 1.7 (Relative likelihood and probability). If assumptions SP1-SP5
are satisfied, then the probability measure P defined above is unique. Further-
more, for any two events A,B, A ≾ B iff P (A) ≤ P (B).

1.4 Conditional likelihoods

Conditional likelihood

So far we have only considered the problem of forming opinions about which
events are more likely a priori. However, we also need to have a way to incorpo-
rate evidence which may adjust our opinions. For example, while we ordinarily
may think that A ≾ B, we may have additional information D, given which
we think the opposite is true. We can formalise this through the notion of
conditional likelihoods.

Example 1.2. Say that A is the event that it rains in Gothenburg, Sweden
tomorrow. We know that Gothenburg is quite rainy due to its oceanic climate,
so we set A ≿ A∁. Now, let us try and incorporate some additional information.
Let D denote the fact that good weather is forecast. I personally believe that
(A | D) ≾ (A∁ | D), i.e. that good weather is more probable than rain, given the
evidence of the weather forecast.
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Conditional likelihoods
Define (A | D) ≾ (B | D) to mean that B is at least as likely as A when it

is known that D has occurred.

Assumption 1.6 (CP). For any events A,B,D,

(A | D) ≾ (B | D) iff A ∩D ≾ B ∩D.

Theorem 1.8. If a relation ≾ satisfies assumptions SP1 to SP5 and CP, then
P is the unique probability distribution such that:

For any A,B,D such that P (D) > 0,

(A | D) ≾ (B | D) iff P (A | D) ≤ P (B | D)

Definition 1.4 (Conditional probability).

P (A | D) =
P (A ∩D)

P (D)
(1.1)

1.5 Probability elicitation

Probability elicitation is the problem of quantifying the subjective probabilities
that a particular individual uses. One of the simplest, and most direct, meth-
ods, is to simply ask. However, because we cannot simply ask somebody to
completely specify a probability distribution, we can ask for this distribution
iteratively.

Example 1.3 (Temperature prediction). Let τ be the temperature tomorrow at
noon in Gothenburg. What are your estimates?

Eliciting the prior / forming the subjective probability measure P

• Select temperature x0 s.t. (τ ≤ x0) ≂ (τ > x0).

• Select temperature x1 s.t. (τ ≤ x1 | τ ≤ x0) ≂ (τ > x1 | τ ≤ x0).

Note that, necessarily, P (τ ≤ x0) = P (τ > x0) = p0. Since P (τ ≤ x0) +
P (τ > x0) = P (τ ≤ x0 ∪ τ > x0) = P (τ ∈ R) = 1, it follows that p0 = 1/2.
Similarly, P (τ ≤ x1 | τ ≤ x0) = P (τ > x1 | τ ≤ x0) = 1/4.

Updating beliefs
Although we always start with a particular belief, this belief must be ad-

justed when we receive new evidence. In probabilistic inference, the updated be-
liefs are simply the probability of future events conditioned on observed events.
This idea is captured neatly by Bayes’ theorem, which links together the prior
probability of events P (Ai) with their posterior probability P (Ai | B) given
some event B and the probability P (B | Ai) of observing the evidence B given
that hypothesis Ai is true.
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Theorem 1.9 (Bayes’ theorem). Let A1, A2, . . . be a (possibly infinite) sequence
of disjoint events such that

∪n
i=1 Ai = S and P (Ai) > 0 for all i. Let B be

another event with P (B) > 0. Then

P (Ai | B) =
P (B | Ai)P (Ai)∑n

j=1 P (B | Aj)P (Aj)
(1.2)

Proof. By definition, P (Ai | B) = P (Ai ∩ B)/P (B), and P (Ai ∩ B) = P (B |
Ai)P (Ai), so:

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
, (1.3)

As
∪n

i=1 Ai = S, we have B =
∪n

j=1(B ∩ Aj). Since Ai are disjoint, so are
B∩Ai. As P is a probability, the union property and an application of 1.3 gives

P (B) = P

 n∪
j=1

(B ∩Aj)

 =

n∑
j=1

P (B ∩Aj) =

n∑
j=1

P (B | Aj)P (Aj).

A simple exercise in updating beliefs

The area of Germany
Form a subjective probability for the area a of Germany in km2.

A1 : a < 105 km2

A2 : a ∈ [105, 2.5 · 105) km2

A3 : a ∈ [2.5 · 105, 5 · 105) km2

A4 : a ∈ [5 · 105, 106) km2

A5 : a ≥ 106 km2.

Choose P (Ai) for all i.

Additional information

• The EU’s largest country is France (6.7 · 105km2) and the smallest is
Malta with 316km2.

• Germany is the 4th largest of the 27 EU states

• UK (2.4 · 105km2) is the 8th largest EU state

The correct answer is A3, since a = 3.57 · 105
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2 Utility theory

While probability can be used to describe how likely an event is, utility can be
used to describe how desirable it is. More concretely, our subjective probabilities
are numerical representations of our beliefs and information. They can be taken
to represent our “internal model” of the world. By analogy, our utilities are
numerical representations of our tastes and preferences. Even if they are not
directly known to us, we assume that our actions are such that we act so as to
obtain maximum utility, in some sense.

2.1 Rewards and preferences

Rewards
Consider that we have to choose a reward r from a set R of possible rewards.

While the elements of R may be abritrary, we shall in general find that we prefer
some rewards to others. In fact, some elements of R may not even be desirable.
As an example, R might be a set of tickets to different musical events, or a set
of financial commodities.

Preferences

Example 2.1 (Musical event tickets). We have a set of tickets R, and we must
choose the ticket r ∈ R we prefer best.

• Case 1: R are tickets to different music events at the same time, at equally
good halls with equally good seats and the same price. Here preferences
simply coincide with the preferences for a certain type of music or an
artist.

• Case 2: R are tickets to different events at different times, at different
quality halls with different quality seats and different prices. Here, prefer-
ences may depend on all the factors.

Example 2.2 (Route selection). We have a set of alternate routes and must
pick one.

• R contains two routes, one short and one long, of the same quality.

• R contains two routes, one short and one long, but the long route is more
scenic.

Preferences among rewards
We will treat preferences in a similar manner as we have treated probabilities.

That is, we will define a linear ordering among possible rewards.
Let a, b ∈ R be two rewards. When we prefer a to b, we write a ≻∗ b.

Conversely, when we like a less than b we write a ≺∗ b. If we like a as much as
b, we write a ≂∗ b. We also use ≿∗ and ≾∗ for I like at least as much as and for
I don’t like any more than, respectively.

Properties of the preference relations.



8 CS 709: 2. Subjective probability and utility

(i) For any a, b ∈ R, one of the following holds: a ≻∗ b, a ≺∗ b, a ≂∗ b.

(ii) If a, b, c ∈ R are such that a ≾∗ b and b ≾∗ c, then a ≾∗ c.

2.2 Preferences among distributions

When we cannot select rewards directly

In most problems, we cannot choose the rewards directly. Rather, we must
make some decision, and then obtain a reward depending on this decision. Since
we may be uncertain about the outcome of a decision, we can specify our un-
certainty regarding the rewards obtained by a decision in terms of a probability
distribution.

Example 2.3 (Route selection). • Each reward r ∈ R is the time it takes
to travel from A to B.

• We prefer shorter times.

• There are two routes, P1, P2.

• Route P1 takes 10 minutes when the road is clear, but 30 minutes when
the traffic is heavy. The probability of heavy traffic on P1 is q1.

• Route P2 takes 15 minutes when the road is clear, but 25 minutes when
the traffic is heavy. The probability of heavy traffic on P2 is q2.

Preferences among probability distributions

Consequently, we have to define preferences between probability distribu-
tions, rather than rewards. We use the same notation as before. Let P1, P2 be
two distributions on (R,FR). If we prefer P1 to P2, we write P1 ≻∗ P2. If w like
P1 less than P2, write P1 ≺∗ P2. If we like P1 as much as P2, we write P1 ≂∗ P2.
Finally, we also use ≿∗ and ≾∗ do denote strict preference relations.

2.3 Utility

The concept of utility allows us to create a unifying framework, such that given
a particular set of rewards and probability distributions on them, we can define
preferences among distributions automatically. The first step is to define utility
as a way to define a preference relation among rewards.

Definition 2.1 (Utility). The utility is a function U : R → R, such that for all
a, b ∈ R

a ≿∗ b iff U(a) ≥ U(b), (2.1)

The above definition is very similar to how we defined probability in terms of
relative likelihood. For a given utility function, its expectation for a distribution
over rewards as:
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Definition 2.2 (Expected utility). The expected utility of a distribution P on
R is:

EP (U) =

∫
R

U(r) dP (r) (2.2)

Finally, we make the assumption that the utility function is such that the
expected utility remains consistent with the preference relations between all
probability distributions we are choosing between.

Assumption 2.1. The expected utility hypothesis The utility of P is equal to
the expected utility of the reward under P . Consequently,

P ≿∗ Q iff EP (U) ≥ EQ(U). (2.3)

Example 2.4. Consider the following decision problem. You have the option
of entering a lottery, for 1 CU, that gives you a prize of 10 CU. The probability
of winning is 0.01. This can be formalised by making it a choice between P ,
where you do not enter the lottery and Q, which represents entering the lottery.
Now we can calculate the expected utility for each choice. This is simply E(U |

r U(r) P Q
did not enter 0 1 0

paid 1 CU and lost −1 0 0.99
paid 1 CU and won 10 9 0 0.01

Table 1: A simple gambling problem

P ) =
∑

r U(r)P (r) and E(U | Q) =
∑

r U(r)Q(r) respectively.

P Q
E(U | ·) 0 −0.9

Table 2: Expected utility for the gambling problem

Monetary rewards

Example 2.5. Choose between the following two gambles:

1. The reward is 500,000 with certainty.

2. The reward is 2,500,000 with probability 0.10. It is 500,000 with probability
0.89, and 0 with probability 0.01.

Example 2.6. Choose between the following two gambles:

1. The reward is 500,000 with probability 0.11, or 0 with probability 0.89.

2. The reward is: 2,500,000 with probability 0.1, or 0 with probability 0.9.

Exercise 2. Show that if gamble 1 is preferred in the first example, gamble 1
must also be preferred in the second example.
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The St. Petersburg Paradox

A simple game [Bernoulli, 1713]

• A fair coin is tossed until a head is obtained.

• If the first head is obtained on the n-th toss, our reward will be 2n

currency units.

How much are you willing to pay, to play this game once?

• The probability to stop at round n is 2−n.

• Thus, the expected monetary gain of the game is

∞∑
n=1

2n2−n = ∞.

• If your utility function were linear you’d be willing to pay any amount to
play.

2.4 Measuring utility

Experimental measurement of utility

Example 2.7. We shall try and measure the utility of all monetary rewards in
some interval [a, b].

Let ⟨a, b⟩ denote a lottery ticket that yields a or b CU with equal probability.
Consider the following sequence:

1. Find x1 such that receiving x1 CU with certainty is equivalent to receiving
⟨a, b⟩.

2. Find x2 such that receiving x2 CU with certainty is equivalent to receiving
⟨a, x1⟩.

3. Find x3 such that receiving x3 CU with certainty is equivalent to receiving
⟨x1, b⟩.

4. Find x4 such that receiving x4 CU with certainty is equivalent to receiving
⟨x2, x3⟩.

If x1 ̸= x4, then your preferences do not meet the requirements of a utility
function.

Exercise 3. 1. Specify an amount a, then observe random value Y .

2. If Y ≥ a, receive Y .

3. If Y < a, receive random reward X with known distribution (independent
of Y ).

4. Show that you should choose a s.t. U(a) = E[U(X)].
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2.5 Convex and concave utility functions

Convex functions

Definition 2.3. A function g is convex on A if, for any points x, y ∈ A, and
any α ∈ [0, 1]:

αg(x) + (1− α)g(y) ≥ g[αx+ (1− α)y]

Theorem 2.1 (Jensen’s inequality). If g is convex on S and x ∈ S with measure
P (A) = 1 and E(x) and E[g(x)] exist, then:

E[g(x)] ≥ g[E(x)]. (2.4)

Example 2.8. If the utility function is convex, then we choose a gamble giving
a random gain x rather than one giving a fixed gain E(x). Thus, a convex utility
function implies risk-taking.

Concave functions

Definition 2.4. A function g is concave on S if, for any points x, y ∈ S, and
any α ∈ [0, 1]:

αg(x) + (1− α)g(y) ≤ g[αx+ (1− α)y]

For concave functions, an analogue of Jensen’s inequality holds (in the other
direction). If the utility function is concave, then we choose a gamble giving
a fixed gain E[X] rather than one giving a random gain X. Consequently, a
concave utility function implies risk aversion.

Example 2.9 (Insurance). The act of buying insurance can be related to con-
cavity of our utility function.

Let x be the insurance cost, h our insurance cover and ϵ the probability of
needing the cover. Then we are going to buy insurance if the utility of losing x
with certainty is greater than the utility of losing −h with probability ϵ.

U(−x) > ϵU(−h) + (1− ϵ)U(0). (2.5)

The company has a linear utility, and fixes the premium x high enough for

x > ϵh. (2.6)

Consequently, we see that from (2.6) that U(−ϵh) ≥ U(−x), as U is an in-
creasing function. Thus, from (2.5) we obtain U(−ϵh) > ϵU(−h)+ (1− ϵ)U(0).
Now the −ϵh term is the utility of our expected monetary loss, while the right
hand side is our expected utility. Consequently if the inequality holds, our utility
function is (at least locally) concave.

3 Summary

Summary

• We can subjectively indicate which events we think are more likely.

• Using relative likelihoods, we can define a subjective probability P for all
events.
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• Similarly, we can subjectively indicate preferences for rewards.

• We can determine a utility function for all rewards.

• Hypothesis: we prefer the probability distribution (over rewards) with the
highest expected utility.

• Concave utility functions imply risk aversion (and convex, risk-taking).
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