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1 Probability

Two notions of probability

While probability is a simple mathematical construction, philosophically it
has had at least two different meanings. In the classical sense, a probability
distribution is a description for a truly random event. In the subjectivist sense,
probabilty is merely a description for uncertainty which may or may not be due
to randomness.

Classical Probability

• A random experiment is performed, with a given set S of possible
outcomes. A simple example is the 2-slit experiment in physics,
where a particle is generated and which can go through either one of
two slits. According to our current understanding of quantum theory,
it is impossible to predict which slit the particle will go through.
There, the set of possible events correspond to the particle passing
through one or the other slit.

• We care about the probability that the particle will go through one of
the two slots in the experiment. Does it depend on where the other
particles have passed through? In the 2-slit experiment, the proba-
bilities of either event can be actually accurately calculated. However,
which slit the particle will go through is fundamentally unpredictable.

Such quantum experiments are the only ones that are currently thought of
as truly random (though some people disagree about that too). Any other
procedure, such as tossing a coin or casting a die, is inherently deterministic
and only appears random due to the difficulty in predicting the outcome.
That is, modelling a coin toss as a random process is usually the best
approximation we can make in practice, given our uncertainty about the
complex dynamics involved.

1
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Subjective Probability

• We assume that S is a set of possible worlds or realities, This set can
be quite large and include anything imaginable. For example, it may
include worlds where dragons are real. However, in practice one only
cares about certain aspects of the world.

• We can interpret the probability of a world in S as a belief that it is
the true world.

In such a setting there is an actual true world ω∗ ∈ S, which is simply
unknown. This could have been set by Nature to an arbritrary value deter-
ministically. The probability only reflects our lack of knowledge.

1.1 Sets, experiments and sample spaces

Set theory definitions

A very useful way to describe a set A is as follows

A ≜ {x | x have property Y }

for example

B(c, r) ≜ {x ∈ Rn | ∥x− c∥ ≤ r}

describes the set of points enclosed in an n-dimensional sphere of radius r with
center c ∈ Rn.

• If an element x belongs to a set A, we write x ∈ A.

• Let the sample space S be a set such that x ∈ S always.

• We say that A is a subset of B or that B contains A, and write A ⊂ B,
iff, x ∈ B for any x ∈ A.

• Let B \A ≜ {x | x ∈ B ∧ x /∈ A} be the set difference.

• Let A △ B ≜ (B \A) ∪ (A \B) be the symmetric set difference.

• The complement of any A ⊂ S is A∁ ≜ S \A.

• The empty set is ∅ = S∁.

• The union of n sets: A1, . . . , An is
∪n

i=1 Ai = A1 ∪ · · · ∪An.

• The intersection of n sets A1, . . . , An is
∩n

i=1 Ai = A1 ∩ · · · ∩An.

• A and B are disjoint if A ∩B = ∅.

Experiments and sample spaces
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Experiments
The set of possible experimental outcomes of an experiment is called the
sample space S.

• S must contain all possible outcomes.

• Each statistician imay consider a different Si for the same experiment.

Example 1.1. Experiment: give medication to a patient.

• S1 = {Recovery within a day,No recovery after a day}.

• S2 = {The medication has side-effects,No side-effect}.

• S3 = all combinations of the above.

Product spaces

• We perform n experiments.

• Assume that the i-th experiment has sample space Si.

• The Cartesian product or product space is defined as

S1 × · · · × Sn = {(s1, . . . , sn) | si ∈ Si, ∀i ∈ {1, . . . , n}} (1.1)

the set of all ordered n-tuples (s1, . . . , sn).

• The sample space
∏n

i=1 Si can be thought of as a sample space of a com-
posite experiment in which all n experiments are performed.

Identical experiment sample spaces

• In many cases, Si = S for all i, i.e. the sample space is identical for
all individual experiment (e.g. n coin tosses).

• We then write Sn =
∏n

i=1 S.

1.2 Events, measure and probability

Events and probability

Probability of a set
If A is a subset of S, the probability of A is a measure of the chances that
the outcome of the experiment will be an element of A.
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Figure 1: A fashionable apartment

Which sets?

Ideally, we would like to be able to assign a probability to every subset
of S. However, for technical reasons, this is not possible.

Example 1.2. Let X be uniformly distributed on [0, 1].

• What is the probability that X will be in [0, 1/4)?

• What is the probability that X will be in [1/4, 1]?

• What is the probability that X will be a rational number?

Measure theory primer
Imagine that you have an apartment S composed of three rooms, A,B,C.

There are some coins on the floor and a 5-meter-long red carpet. We can measure
various things in this apartment.

Area

• A: 4× 5 = 20m2.

• B: 6× 4 = 24m2.

• C: 2× 5 = 10m2.

Coins on the floor

• A: 3.

• B: 4
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• C: 5.

Length of red carpet

• A: 0m

• B: 0.5m

• C: 4.5m.

Measure the sets: F = {∅, A,B,C,A ∪B,A ∪ C,B ∪ C,A ∪B ∪ C}. It is
easy to see that the union of any sets in F is also in F . In other words, F is
closed under union. Furthermore, F contains the whole space S.

Note that all those measures have an additive property.

Measure and probability

As previously mentioned, the probability of A ⊂ S is a measure of the
chances that the outcome of the experiment will be an element of A. Here we
give a precise definition of what we mean by measure and probability.

Definition 1.1 (A field on S). A family F of sets, such that for each A ∈ F ,
A ⊂ S, is called a field on S if and only if

1. S ∈ F

2. if A ∈ F , then A∁ ∈ F .

3. For any A1, A2, . . . , An such that Ai ∈ F , it holds that:
∪n

i=1 Ai ∈ F .

From the above definition, it is easy to see that Ai ∩Aj is also in the field.

Definition 1.2 (σ-field on S). A family F of sets, such that ∀A ∈ F , A ⊂ S,
is called a σ-field on S if and only if

1. S ∈ F

2. if A ∈ F , then A∁ ∈ F .

3. For any sequence A1, A2, . . . such that Ai ∈ F , it holds that:
∪∞

i=1 Ai ∈ F .

It is easy to verify that the F given in the apartment example satisfies these
properties.

Definition 1.3 (Measure). A measure λ on (S,F) is a function λ : F → R+

such that

1. λ(∅) = 0.

2. λ(A) ≥ 0 for any A ∈ F .
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3. For any collection of subsets A1, . . . , An with Ai ∈ F and Ai ∩Aj = ∅.

λ

( ∞∪
i=1

Ai

)
=

∞∑
i=1

λ(Ai) (1.2)

It is easy to verify that the floor area, the number of coins, and the length of
the red carpet are all measures. In fact, the area and length correspond to what
is called a Lebesgue measure and the number of coins to a counting measure.

Definition 1.4 (Probability measure). A probability measure P on (S,F) is a
function P : F → [0, 1] such that:

1. P (S) = 1

2. P (∅) = 0

3. P (A) ≥ 0 for any A ∈ F .

4. If A1, A2, . . . are disjoint then

P

( ∞∪
i=1

Ai

)
=

∞∑
i=1

P (Ai) (union)

(S,F , P ) is called a probability space.

So, probability is just a special type of measure.

1.2.1 The Lebesgue measure

Definition 1.5 (Outer measure). Let (S,F , λ) be a measure space. The outer
measure of a set A ⊂ S is:

λ∗ ≜ inf A ⊂
∪
k

Bk

∑
k

λ(Bk). (1.3)

Definition 1.6 (Inner measure). Let (S,F , λ) be a measure space. The outer
measure of a set A ⊂ S is:

λ∗ ≜ λ(S)− λ(S \A). (1.4)

Definition 1.7 (Lebesgue measurable sets). A set A is (Lebesgue) measurable
if the outer and inner measures are equal.

λ∗(A) = λ∗(B). (1.5)

The common value of the inner and outer measure is called the Lebesgue mea-
sure1 λ̄ = λ∗(A).

1It is easy to see that λ̄ is a measure.
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Figure 2: In the above case, S is a unit square and taking P to be the Lebesgue
measure, we see that P (S) = 1·1, P (A) = 1·w, P (B) = h·1 and P (A∩B) = wh,
so A and B are independent.

1.3 Conditioning and independence

Independent events and conditional probability
Events correspond to sets. Thus, the probability of the event that a draw

from S is in A is equal to the probability measure of A, P (A).

Definition 1.8 (Independent events). Two events A,B are independent if
P (A ∩B) = P (A)P (B). The events in a family F of events are independent if
for any sequence A1, A2, . . . of events in F ,

P

(
n∩

i=1

Ai

)
=

n∏
i=1

P (Ai) (independence)

Definition 1.9 (Conditional probability). The conditional probability of A
when B, s.t. P (B) > 0, is given is:

P (A | B) ≜ P (A ∩B)

P (B)
. (1.6)
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Of course, P (A ∩B) = P(A | B)P(B) even if A,B are not independent.

Bayes’ theorem

The following theorem trivially follows from the above discussion. However,
versions of it shall be used repeatedly throughout. For this reason we present
it here together with a detailed proof.

Theorem 1.1 (Bayes’ theorem). Let A1, A2, . . . be a (possibly infinite) sequence
of disjoint events such that

∪∞
i=1 Ai = S and P (Ai) > 0 for all i. Let B be

another event with P (B) > 0. Then

P (Ai | B) =
P (B | Ai)P (Ai)∑∞

j=1 P (B | Aj)P (Aj)
(1.7)

Proof. From (1.6), P (Ai | B) = P (Ai ∩ B)/P (B) and also P (Ai ∩ B) = P (B |
Ai)P (Ai). Thus

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
,

and we continue analyzing the denominator P (B). First, due to
∪∞

i=1 Ai = S
we have B =

∪∞
j=1(B ∩ Aj). Since Ai are disjoint, so are B ∩ Ai. Then from

the union property of probability distributions we have

P (B) = P

 ∞∪
j=1

(B ∩Aj)

 =
∞∑
j=1

P (B ∩Aj) =
∞∑
j=1

P (B | Aj)P (Aj),

which finishes the proof.

Binomial coefficients

Binomial coefficients appear in a lot of different distributions. They are
especially useful for combinatorial problems.(

x

n

)
≜
∏n−1

i=0 (x− i)

n!
, x ∈ R, n ∈ N, (1.8)

and
(
x
0

)
= 1. It follows that(

k

n

)
=

k!

n!(k − n)!
k, n ∈ N, k ≥ n. (1.9)

2 Random variables

Random variables

A random variable X is a special kind of random quantity, defined as a real
function of outcomes in S. Thus, it also defines a mapping from a probability
measure P on (S,F) to a probability measure PX on (R,B(R)). More precisely,
we define the following.
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Figure 3: A distribution function F

Definition 2.1 (Measurable function). Let F on S be a σ-field. A function
g : S → R is said to be measurable with respect to F , or F-measurable, if, for
any x ∈ R,

{s ∈ S | g(s) ≤ x} ∈ F .

Definition 2.2 (Random variable). Let (S,F , P ) be a probability space. A
random variable X : S → R is a real-valued, F-measurable function.

The distribution of X

Every random variable X induces a probability measure PX on R. For
any B ⊂ R we define

PX(B) = P(X ∈ B) = P ({s | X(s) ∈ B}). (2.1)

Thus, the probability that X is in B is equal to the P -measure of the points
s ∈ S such that X(s) ∈ B and also equal to the PX -measure of B.

Here P is used as a short-hand notation.

Exercise 1. S is the set of 52 playing cards. X(s) is the value of each card
(1, 10 for the ace and figures respectively). What is the probability of drawing a
card s with X(s) > 7?

(Cumulative) Distribution functions

Definition 2.3 ((Cumulative) Distribution function). The distribution function
of a random variable X is the function F : R → R:

F (t) = P(X ≤ t). (2.2)

Properties

• If x ≤ y, then F (x) ≤ F (y).

• F is right-continuous.

• At the limit,
lim

t→−∞
F (t) = 0, lim

t→∞
F (t) = 1.
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2.1 Discrete and continuous random variables

Types of distributions
On the real line, there are two types of distributions for a random variable.

Here, once more, we employ the P notation as a shorthand for the probability
of general events involving random variables, so that we don’t have to deal with
the measure notation. The two following examples should give some intuition.

Discrete distributions
X : S → {x1, . . . , xn} takes n discrete values (n can be infinite). The
probability function of X is

f(x) ≜ P(X = x),

defined for x ∈ {x1, . . . , xn}. For any B ⊂ R:

PX(B) =
∑
xi∈B

f(xi).

In addition, we write P(X ∈ B) to mean PX(B).

Continuous distributions
X has a continuous distribution if there exists a probability density function
f s.t. ∀B ⊂ R:

PX(B) =

∫
B

f(x) dx.

It is possible that X has neither a continuous, nor a discrete distribution.

2.2 Random vectors

Generalisation to Rm

We can generalise to random vectors in a Euclidean space. Once more, there
are two special cases of distributions for the random vector X = (X1, . . . , Xn).

Discrete distributions

P(X1 = x1, . . . , Xm = xm) = f(x1, . . . , xm)

Continuous distributions
For B ⊂ Rm

P {(X1, . . . , Xm) ∈ B} =

∫
B

f(x1, . . . , xm) dx1 · · · dxm
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Measure-theoretic notation
The previously seen special cases can be handled with a unified notation if we

take advantage of the fact that probability is only a particular type of measure.
As a first step, we note that summation can also be seen as integration with
respect to the counting measure and that Riemann integration is integration
with respect to the Lebesgue measure.

Integral with respect to a measure µ

Introduce the common notation
∫
· · · dµ(x), where µ is a measure. Let

some real function g : S → R. Then for any subset B ⊂ S we can write

• Discrete case: f is the probability function and we choose the counting
measure for µ, so:∑

x∈B

g(x)f(x) =

∫
B

g(x)f(x) dµ(x)

Roughly speaking, the counting measure µ(S) is equal to the number
of elements in S.

• Continuous case: f is the probability density function and we choose
the Lebesgue measure for µ, so:∫

B

g(x)f(x) dx =

∫
B

g(x)f(x) dµ(x)

Roughly speaking, the Lebesgue measure µ(S) is equal to the volume
of S.

In fact, since probability is a measure in itself, we do not need to complicate
things by using f and µ at the same time! This allows us to use the following
notation.

Lebesgue-Stiletjes notation
If P is a probability measure on (S,F) and B ⊂ S, and g is F-measurable,
we write the probability that g(x) takes the value B can be written equiv-
alently as:

P(g ∈ B) = Pg(B) =

∫
B

g(x) dP (x) =

∫
B

g dP. (2.3)

Intuitively, dP is related to densities in the following way. If P is a measure
on S and is absolutely continuous with respect to another measure µ, then
p ≜ dP

dµ is the (Radon-Nikodyn) derivative of P with respect to µ. We write

the integral as
∫
gp dµ. If µ is the Lebesgue measure, then p coincides with the

probability density function.
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Marginal distributions and independence
Although this is a straightforward outcome of the set-theoretic definition of

probability, we also define the marginal explicitly for random vectors.

Marginal distribution
The marginal distribution of X1, . . . , Xk from a set of variables X1, . . . , Xm,
is

P(X1, . . . , Xk) ≜
∫

P(X1, . . . , Xk, Xk+1 = xk+1, . . . , Xm = xm) dµ(xk+1, . . . , xm).

(2.4)

In the above, P(X1, . . . Xk) can be thought of as the probability measure
for any events related to the random vector (X1, . . . , Xk). Thus, it defines
a probability measure over

(
Rk,B

(
Rk
))
. In fact, let Y = (X1, . . . , Xk) and

Z = (Xk+1, . . . , Xm) for simplicity. Then define Q(A) ≜ P(Z ∈ A), with
A ⊂ Rm−k−1. Then the above can be re-written as:

P(Y ∈ B) =

∫
Rm−k−1

P(Y ∈ B | Z = z) dQ(z).

Similarly, P(Y | Z = z) can be thought of as a function mapping from values
of Z to probability measures. Let Pz(B) ≜ P(Y ∈ B | Z = z) be this measure
corresponding to a particular value of z. Then we can write

P(Y ∈ B) =

∫
Rm−k−1

(∫
B

dPz(y)

)
dQ(z).

Independence
If Xi is independent of Xj for all i ̸= j:

P(X1, . . . , Xm) =
M∏
i=1

P(Xi), f(x1, . . . , xm) =
M∏
i=1

gi(xi) (2.5)

2.3 Moments

There are some simple properties of the random variable under consideration
which are frequently of interest in statistics. Two of those properties are expec-
tation and variance.

Expectation

Definition 2.4. The expectation E(X) of any random variable X : S → R,where
R is a vector space, with distribution PX is defined by

E(X) ≜
∫
R

tdPX(t), (2.6)

as long as the integral exists.
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Furthermore,

E[g(X)] =

∫
g(t) dPX(t),

for any function g.

Variance

Definition 2.5. The variance V(X) of any random variable X : S → R with
distribution PX is defined by

V(X) ≜
∫ ∞

−∞
[t− E(X)]

2
dPX(t)

= E
{
[X − E(X)]

2
}

= E(X2)− E2(X).

(2.7)

When X : S → R with R an arbitrary vector space, the above becomes the
covariance matrix :

V(X) ≜
∫ ∞

−∞
[t− E(X)] [t− E(X)]

⊤
dPX(t)

= E
{
[X − E(X)] [X − E(X)]

⊤
}

= E(XX⊤)− E(X)E(X)⊤.

(2.8)

Divergences
One useful idea is KL-divergences on measures.

Definition 2.6. KL-Divergence

D (P ∥ Q) ≜
∫

dP

dQ
dP. (2.9)

Empirical distributions

Definition 2.7. Let xn = (x1, . . . , xn) drawn from a product measure xn ∼ Pn

on the measurable space (Xn,Fn). Let S be any σ-field on X . Then empirical
distribution of xn is defined as

P̂n(B) ≜ 1

n

n∑
t=1

I {xt ∈ B} . (2.10)

3 Conclusion

Recommended further reading
Most of this material is based on [2]. See [3] for a really clear exposition of

measure, starting from rectangle areas (developed from course notes in 1957).
Also see [4] for a verbose, but interesting and rigorous introduction to subjective
probability. More technical books, such as [1] are not very approachable by non-
math graduates.



14 CS 709: 1. Introduction to probability

Summary

• Sample space S contains all possible outcomes of an experiment.

• σ-field F s.t. ∀A,B ∈ F , A ⊂ S, A ∪B ∈ F , S ∈ F .

• Measurable space (S,F), measure space (S,F , µ).

• Measure µ : F → R such that µ(∅) = 0, and µ(Ai) ≥ 0 for any Ai ∈ F .
For disjoint Ai, µ (

∪
i Ai) =

∑
i µ(Ai).

• Probability space (S,F , P ), with probability measure P such that P (S) =
1.

• Probability that x ∈ A:

P(x ∈ A) ≜ P (A) =

∫
A

dP (t), A ⊂ S

• Expectation of X : S → Z

E(X) ≜
∫
S
X(t) dP (t) =

∫
Z

udPX(u)

• Conditional probability

P(A | B) =
P(A,B)

P(B)
, P (A | B) =

P (A ∩B)

P (B)
,

• Marginal distribution

P(B) =
∑
i

P(B,A = i),
∑
i

P(A = i) = 1,

P (B) =
∑
i

P (B ∩Ai),
∪
i

Ai = S.

• If A,B are independent

P(A,B) = P(A)P(B), P (A ∩B) = P (A)P (B).
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