
Local Search

Local Search (Greedy Descent):

Maintain an assignment of a value to each variable.

Repeat:

I Select a variable to change
I Select a new value for that variable

Until a satisfying assignment is found
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Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Heuristic function to be minimized: the number of conflicts.
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Greedy Descent Variants

To choose a variable to change and a new value for it:

Find a variable-value pair that minimizes the number of
conflicts

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.

Select a variable at random.
Select a value that minimizes the number of conflicts.

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
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Complex Domains

When the domains are small or unordered, the neighbors of an
assignment can correspond to choosing another value for one
of the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes
each variable proportional to the gradient of the heuristic
function in that direction.
The value of variable Xi goes from vi to vi � ⌘ @h

@Xi
.

⌘ is the step size.
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Problems with Greedy Descent

a local minimum that is
not a global minimum

a plateau where the
heuristic values are
uninformative

a ridge is a local
minimum where n-step
look-ahead might help

Ridge

Local Minimum

Plateau
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Randomized Algorithms

Consider two methods to find a minimum value:
I Greedy descent, starting from some position, keep moving

down & report minimum value found
I Pick values at random & report minimum value found

Which do you expect to work better to find a global
minimum?

Can a mix work better?
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Randomized Greedy Descent

As well as downward steps we can allow for:

Random steps: move to a random neighbor.

Random restart: reassign random values to all variables.

Which is more expensive computationally?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if di↵erent parts of the search space have di↵erent
structure?
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Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent: move to a lowest neighbor

Random walk: taking some random steps

Random restart: reassigning values to all variables
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Random Walk

Variants of random walk:

When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

When selecting a variable then a value:
I Sometimes choose any variable that participates in the most

conflicts.
I Sometimes choose any variable that participates in any conflict

(a red node).
I Sometimes choose any variable.

Sometimes choose the best value and sometimes choose a
random value.
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Comparing Stochastic Algorithms

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.
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Runtime Distribution

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.
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Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T .

I With current assignment n and proposed assignment n0 we
move to n0 with probability e(h(n

0)�h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2⇥ 10�9 9⇥ 10�14
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Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we don’t allow an assignment of to the same value
to the variable chosen.

We can implement it more e�ciently than as a list of
complete assignments.

It can be expensive if k is large.
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Parallel Search

A total assignment is called an individual .

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.
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Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1, it is greedy descent.

When k = 1, it is breadth-first search.

The value of k lets us limit space and parallelism.
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Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.

c�D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.2, Page 20

peter ljunglöf


peter ljunglöf




Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the o↵spring:

For each generation:
I Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
I For each pair, perform a cross-over: form two o↵spring each

taking di↵erent parts of their parents:
I Mutate some values.

Stop when a solution is found.
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Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two o↵spring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The e↵ectiveness depends on the ordering of the variables.

Many variations are possible.
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