Learning Objectives

At the end of the class you should be able to:
@ recognize and represent constraint satisfaction problems

@ show how constraint satisfaction problems can be solved with
search
@ implement and trace arc-consistency of a constraint graph

@ show how domain splitting can solve constraint problems

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 1

Constraint satisfaction

o A Constraint Satisfaction problem consists of:
> a set of variables
> a set of possible values, a domain for each variable
> a set of constraints amongst subsets of the variables
@ The aim is to find a set of assignments that satisfies all
constraints, or to find all such assignments.

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.3, Page 1

peter ljunglöf

Example: crossword puzzle

at, be, he, it, on,
eta, hat, her, him,
IIIII one,
desk, dove, easy,
else, help, kind,
soon, this,
dance, first, fuels,
given, haste, loses,

sense, sound, think,
usage

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.3, Page 2

Dual Representations

Two ways to represent the crossword as a CSP

@ First representation:
» nodes represent word positions: 1-down. . . 6-across

» domains are the words
» constraints specify that the letters on the intersections must

be the same.

@ Dual representation:
» nodes represent the individual squares
» domains are the letters
» constraints specify that the words must fit

@©D. Poole and A. Mackworth 2009 Artificial Intelligence, Lecture 4.3, Page 3

Posing a Constraint Satisfaction Problem

A CSP is characterized by

@ A set of variables Vi, V5, ..., V,.
@ Each variable V; has an associated domain Dy, of possible
values.

@ There are hard constraints on various subsets of the variables
which specify legal combinations of values for these variables.

@ A solution to the CSP is an assignment of a value to each
variable that satisfies all the constraints.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 2

peter ljunglöf
dom(V) in the book

Example: scheduling activities

e Variables: A, B, C, D, E that represent the starting times of
various activities.

e Domains: Da={1,2,3,4}, Dg ={1,2,3,4},
Dc = {1,2,3,4}, Dp = {1,2,3,4}, D¢ = {1,2,3,4}

o Constraints:
(BE3)AN(CHE2)N(A#B)AN(B#C)A

(C<D)ANA=D)AN(E<A)N(E<B)A
(E<C)AN(E<D)AN(B#D,).

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 3

Generate-and-Test Algorithm

o Generate the assignment space D =Dy, x Dy, x ... x Dy,.
Test each assignment with the constraints.

o Example:

D = DpxDgxDecxDpxDg
= {1,2,3,4} x {1,2,3,4} x {1,2,3,4}
x{1,2,3,4} x{1,2,3,4}
= {(1,1,1,1,1),(1,1,1,1,2),...,(4,4,4 4, 4)}.

@ How many assignments need to be tested for n variables each
with domain size d?

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 4

Backtracking Algorithms

@ Systematically explore D by instantiating the variables one at
a time

@ evaluate each constraint predicate as soon as all its variables
are bound

@ any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Assignment A= 1A B =1 is inconsistent with
constraint A # B regardless of the value of the other variables.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 5

CSP as Graph Searching

A CSP can be solved by graph-searching:
@ A node is an assignment values to some of the variables.

@ Suppose node N is the assignment X1 = vq,..., Xk = k.
Select a variable Y that isn't assigned in .
For each value y; € dom(Y)
X1 =vi,..., Xk = vk, Y = y; is a neighbour if it is consistent
with the constraints.

@ The start node is the empty assignment.

@ A goal node is a total assignment that satisfies the constraints.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 6

Example 4.13 Suppose you have a CSP with the variables A, B, and C, each
with domain {1,2,3,4}. Suppose the constraints are A < Band B < C. A possi-
ble search tree is shown in Figure 4.1 (on the next page). In this figure, a node
corresponds to all of the assignments from the root to that node. The potential
nodes that are pruned because they violate constraints are labeled with X.

The leftmost X corresponds to the assignment A = 1, B = 1. This violates
the A < B constraint, and so it is pruned.

This CSP has four solutions. The leftmost oneis A = 1, B = 2, C = 3.
The size of the search tree, and thus the efficiency of the algorithm, depends
on which variable is selected at each time. A static ordering, such as always
splitting on A then B then C, is less efficient than the dynamic ordering used
here. The set of answers is the same regardless of the variable ordering.

In the preceding example, there would be 43 = 64 assignments tested in a
generate-and-test algorithm. For the search method, there are 22 assignments
generated.

B=3

B=2

PPN

Figure 4.1: Search tree for the CSP of Example 4.13

Consistency Algorithms

@ ldea: prune the domains as much as possible before selecting
values from them.

@ A variable is domain consistent if no value of the domain of
the node is ruled impossible by any of the constraints.

o Example: Is the scheduling example domain consistent?

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 7

Consistency Algorithms

@ ldea: prune the domains as much as possible before selecting
values from them.

@ A variable is domain consistent if no value of the domain of
the node is ruled impossible by any of the constraints.

o Example: Is the scheduling example domain consistent?
Dg = {1,2,3,4} isn't domain consistent as B = 3 violates
the constraint B # 3.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 8

Constraint Network

@ There is a oval-shaped node for each variable.
@ There is a rectangular node for each constraint.

@ There is a domain of values associated with each variable
node.

@ There is an arc from variable X to each constraint that
involves X.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 9

@

B<C

-©

Figure 4.2: Constraint network for the CSP of Example 4.15

’ Example 4.15 Consider Example 4.13 (page 119). There are three variables A,
B, and C, each with domain {1,2,3,4}. The constraints are A < Band B < C.In
the constraint network, shown in Figure 4.2, there are four arcs:

(A,A < B)
(B,A < B)
(B,B<C)
(C,B<C)

Example Constraint Network

A#B

. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 10

Arc Consistency

@ Anarc (X,r(X,Y)) is arc consistent if, for each value
x € dom(X), there is some value y € dom(Y') such that
r(x,y) is satisfied.

@ A network is arc consistent if all its arcs are arc consistent.

e What if arc (X, r(X,Y)) is not arc consistent?

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 11

Arc Consistency

@ Anarc (X,r(X,Y)) is arc consistent if, for each value
x € dom(X), there is some value y € dom(Y') such that
r(x,y) is satisfied.

@ A network is arc consistent if all its arcs are arc consistent.

e What if arc (X, r(X,Y)) is not arc consistent?
All values of X in dom(X) for which there is no corresponding

value in dom(Y') can be deleted from dom(X) to make the
arc (X, r(X,Y)) consistent.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 12

Arc Consistency Algorithm

@ The arcs can be considered in turn making each arc consistent.

@ When an arc has been made arc consistent, does it ever need
to be checked again?

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 13

Arc Consistency Algorithm

@ The arcs can be considered in turn making each arc consistent.

@ When an arc has been made arc consistent, does it ever need
to be checked again?
An arc (X, r(X,Y)) needs to be revisited if the domain of
one of the Y's is reduced.

@ Three possible outcomes when all arcs are made arc
consistent: (Is there a solution?)

» One domain is empty —
» Each domain has a single value —
» Some domains have more than one value —-

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 14

Arc Consistency Algorithm

@ The arcs can be considered in turn making each arc consistent.

@ When an arc has been made arc consistent, does it ever need
to be checked again?
An arc (X, r(X,Y)) needs to be revisited if the domain of
one of the Y's is reduced.

@ Three possible outcomes when all arcs are made arc
consistent: (Is there a solution?)

>

>

>

One domain is empty = no solution

Each domain has a single value = unique solution

Some domains have more than one value = there may or
may not be a solution

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 15

I Example 4.21 Suppose there are three variables, A, B and C, each with the
domain {1,2,3}. Consider the constraints A = B, B = C,and A # C. This is
arc consistent: no domain can be pruned using any single constraint. However,
there are no solutions. There is no assignment to the three variables that satisfies

I the constraints.

1: procedure GAC(V,dom, C)

2 Inputs

3 V: a set of variables

4 dom: a function such that dom(X) is the domain of variable X

5 C: set of constraints to be satisfied

6 Output

7 arc-consistent domains for each variable

8 Local

9 Dy is a set of values for each variable X

10: TDA is a set of arcs

11: for each variable X do

12 Dx « dom(X)

13: TDA — {(X,c) |c € Cand X € scope(c)}

140 while TDA # {} do

15: select (X,c) € TDA;

16: TDA — TDA\ {(X,¢)};

17: NDx « {x|x € Dx and some {X = x,Y1 = y1,..., Yk = %} € ¢
where y; € Dy, for all i}

18: if NDy # Dy then

19: TDA «— TDAU{(Z,c') |X € scope(c’), ¢' is not ¢, Z € scope(c’) \
{x}}

20: Dx < NDx

21: return {Dx|X is a variable}

Figure 4.3: Generalized arc consistency algorithm

Example 4.19 Consider the algorithm GAC operating on the network from
Example 4.15. Initially, all of the arcs are in the TDA set. Here is one possible
sequence of selections of arcs:

Suppose the algorithm first selects the arc (4, A < B). For A = 4, there
is no value of B that satisfies the constraint. Thus, 4 is pruned from the
domain of A. Nothing is added to TDA because there is no other arc cur-
rently outside TDA.

Suppose that (B, A < B) is selected next. The value 1 can be pruned from
the domain of B. Again no element is added to TDA.

Suppose that (B,B < C) is selected next. The value 4 can be removed
from the domain of B. Because the domain of B has been reduced, the
arc (A, A < B) must be added back into the TDA set because the domain
of A could potentially be reduced further now that the domain of B is
smaller.

If the arc (A, A < B) is selected next, the value A = 3 can be pruned from
the domain of A.

The remaining arc on TDA is (C,B < C). The values 1 and 2 can be re-
moved from the domain of C. No arcs are added to TDA and TDA be-
comes empty.

The algorithm then terminates with D4 = {1,2}, D = {2,3}, Dc = {3,4}.
Although this has not fully solved the problem, it has greatly simplified it.

| Example 4.20 Consider applying GAC to the scheduling problem of Example
4.8 (page 117). The network shown in Figure 4.4 (on the next page) has already
been made domain consistent (the value 3 has been removed from the domain
of B and 2 has been removed from the domain of C). Suppose arc (D,C < D)
is considered first. The arc is not arc consistent because D = 1 is not consistent
with any value in D, so 1 is deleted from Dp. Dp becomes {2,3,4} and arcs
(A,A=D),(B,B # D),and (E,E < D) could be added to TDA but they are on
it already.
Suppose arc (C,E < C) is considered next; then D¢ is reduced to {3,4} and
arc (D, C < D) goes back into the TDA set to be reconsidered.
Suppose arc (D, C < D) is next; then Dp is further reduced to the singleton
{4}. Processing arc (C,C < D) prunes D¢ to {3}. Making arc (A, A = D) con-
sistent reduces D4 to {4}. Processing (B, B # D) reduces Dg to {1,2}. Then arc
(B,E < B) reduces Dg to {2}. Finally, arc (E,E < B) reduces Dg to {1}. All arcs
remaining in the queue are consistent, and so the algorithm terminates with the
TDA set empty. The set of reduced variable domains is returned. In this case,
the domains all have size 1 and there is a unique solution: A =4,B=2,C =3,
| D=4E=1

Finding solutions when AC finishes

If some domains have more than one element —> search
Split a domain, then recursively solve each half.
It is often best to split a domain in half.

Do we need to restart from scratch?

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 16

One effective way to solve a CSP is to use arc consistency to simplify the
network before each step of domain splitting. That is, to solve a problem,

o simplify the problem using arc consistency; and,

o if the problem is not solved, select a variable whose domain has more
than one element, split it, and recursively solve each case.

One thing to notice about this algorithm is that it does not require a restart of
the arc consistency from scratch after domain splitting. If the variable X has its
domain split, TDA can start with just the arcs that are possibly no longer arc
consistent as a result of the split; these are only the arcs of the form (Y, 7), where
X appears in r and Y is a variable, other than X, that appears in constraint .

Example 4.22 In Example 4.19 (page 122), arc consistency simplified the net-

work, but did not solve the problem. After arc consistency had completed, there

were multiple elements in the domains. Suppose B is split. There are two cases:

® B = 2. In this case A = 2 is pruned. Splitting on C produces two of the
answers.

e B = 3.In this case C = 3 is pruned. Splitting on A produces the other two
answers.

This search tree should be contrasted with the search tree of Figure 4.1

(page 120). The search space with arc consistency is much smaller, and it was

not as sensitive to the selection of variable orderings. [Figure 4.1 (page 120)

| would be much bigger with different variable orderings.]

Hard and Soft Constraints

@ Given a set of variables, assign a value to each variable that
either
» satisfies some set of constraints: satisfiability problems —
“hard constraints”
» minimizes some cost function, where each assignment of
values to variables has some cost: optimization problems —
“soft constraints”

@ Many problems are a mix of hard and soft constraints
(called constrained optimization problems).

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 4.1, Page 18

