
Learning Objectives

At the end of the class you should be able to:

explain how cycle checking and multiple-path pruning can
improve e�ciency of search algorithms

explain the complexity of cycle checking and multiple-path
pruning for di↵erent search algorithms

justify why the monotone restriction is useful for A⇤ search

predict whether forward, backward, bidirectional or
island-driven search is better for a particular problem

demonstrate how dynamic programming works for a particular
problem
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Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes No Exp

Heuristic depth-first Local min h(p)

No No Linear

Best-first Global min h(p)

No No Exp

Lowest-cost-first Minimal cost(p)

Yes No Exp

A

⇤ Minimal f (p)

Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
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Cycle Checking

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

In depth-first methods, checking for cycles can be done in
time in path length.

For other methods, checking for cycles can be done in
time in path length.

Does cycle checking mean the algorithms halt on finite
graphs?
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Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.
What needs to be stored?
How does multiple-path pruning compare to cycle checking?
Do search algorithms with multiple-path pruning always halt
on finite graphs?
What is the space & time overhead of multiple-path pruning?
Can multiple-path pruning prevent an optimal solution being
found?
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path.

change the initial segment of the paths on the frontier to use
the shorter path.

ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.
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Multiple-Path Pruning & A⇤

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p

0 on the frontier.

Suppose path p

0 ends at node n

0.

p was selected before p

0, so:

cost(p) + h(n)  cost(p0) + h(n0).

Suppose cost(n0, n) is the actual cost of a path from n

0 to n.
The path to n via p

0 is shorter that p so:
cost(p0) + cost(n0, n) < cost(p).

cost(n0, n) < cost(p)� cost(p0)  h(n0)� h(n).

We can ensure this doesn’t occur if
|h(n0)� h(n)|  cost(n0, n).
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Monotone Restriction

Heuristic function h satisfies the monotone restriction if
|h(m)� h(n)|  cost(m, n) for every arc hm, ni.
If h satisfies the monotone restriction, A⇤ with multiple path
pruning always finds the shortest path to a goal.

This is a strengthening of the admissibility criterion.
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Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available.
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Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 ⌧ b

k . This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g .

s �! i1 �! i2 �! . . . �! im�1 �! g

There are m smaller problems rather than 1 big problem.

This can win as mb

k/m ⌧ b

k .

The problem is to identify the islands that the path must pass
through. It is di�cult to guarantee optimality.

The subproblems can be solved using islands =)
hierarchy of abstractions.
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Dynamic Programming

Idea: for statically stored graphs, build a table of dist(n) the
actual distance of the shortest path from node n to a goal.
This can be built backwards from the goal:

dist(n) =

⇢
0 if is goal(n),
minhn,mi2A(|hn,mi|+ dist(m)) otherwise.

This can be used locally to determine what to do.
There are two main problems:

It requires enough space to store the graph.

The dist function needs to be recomputed for each goal.
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