Learning Objectives

At the end of the class you should be able to:

@ explain how cycle checking and multiple-path pruning can
improve efficiency of search algorithms

@ explain the complexity of cycle checking and multiple-path
pruning for different search algorithms

@ justify why the monotone restriction is useful for A* search
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Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added

Breadth-first First node added

Heuristic depth-first | Local min h(p)

Best-first Global min h(p)

Lowest-cost-first Minimal cost(p)

A* Minimal f(p)

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path
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Summary of Search Strategies

Strategy Frontier Selection | Complete | Halts | Space
Depth-first Last node added | No No Linear
Breadth-first First node added | Yes No Exp
Heuristic depth-first | Local min h(p) No No Linear
Best-first Global min h(p) | No No Exp
Lowest-cost-first Minimal cost(p) | Yes No Exp
A* Minimal f(p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.

Halts — on finite graph (perhaps with cycles).

Space — as a function of the length of current path
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Cycle Checking

S

@ A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

@ In depth-first methods, checking for cycles can be done in
,,,,,,,,,,,, time in path length.

@ For other methods, checking for cycles can be done in
,,,,,,,,,,,, time in path length.

@ Does cycle checking mean the algorithms halt on finite
graphs?
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Multiple-Path Prunlng

o-b] 0o

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

How does multiple-path pruning compare to cycle checking?
Do search algorithms with multiple-path pruning always halt
on finite graphs?

What is the space & time overhead of multiple-path pruning?
Can multiple-path pruning prevent an optimal solution being
found?
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?
@ remove all paths from the frontier that use the longer path.
@ change the initial segment of the paths on the frontier to use
the shorter path.

@ ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.
@ p was selected before p’, so:
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ is shorter that p so:
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.
@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').
@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.

The path to n via p’ is shorter that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n', n) <
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.
@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').
@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.

The path to n via p’ is shorter that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n’, n) < cost(p) — cost(p’) <
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Multiple-Path Pruning & A*

@ Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p’ on the frontier.

@ Suppose path p’ ends at node n’.

@ p was selected before p/, so:
cost(p) + h(n) < cost(p’) + h(n').

@ Suppose cost(n’, n) is the actual cost of a path from n’ to n.
The path to n via p’ is shorter that p so:
cost(p’) + cost(n’, n) < cost(p).

cost(n’, n) < cost(p) — cost(p’) < h(n') — h(n).

We can ensure this doesn't occur if
|h(n") — h(n)| < cost(n', n).
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ne Restriction

@ Heuristic function h satisfies the monotone restriction if
|h(m) — h(n)| < cost(m, n) for every arc (m, n).

@ If h satisfies the monotone restriction, A* with multiple path
pruning always finds the shortest path to a goal.

@ This is a strengthening of the admissibility criterion.
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Direction of Search

Backward branching

@ Search complexity is b’ d use forward search if forward
branching factor i rd branching factor, and
vice versa.

@ NotesWhen graph is dynamically constructetimthe backwards

aph may not be available.
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Bidirectional Search

saving in time and spa

@ The main problem is maki

esting locations.
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Island Driven Search

There are m smaller s rather than 1 big problem.

@ This can win as m

lerarchy of abstractions.
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Dynamic Programming

if is_goal(n),
m)| + dist(m)) otherwise.

©D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 3.4, Page 17


peter ljunglöf

peter ljunglöf


