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Rewards that depend on the outcome of an experiment

Decisions d ∈ D

Experiments with outcomes in Ω.

Reward r ∈ R depending on experiment and outcome.

Utility U : R → R.

Example 1 (Taking the umbrella)

There is some probability of rain.

We don’t like carrying an umbrella.

We really don’t like getting wet.
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Rewards that depend on the outcome of an experiment Formalisation of the problem setting

Random outcome ω ∼ P.

Decision d ∈ D

Definition 2 (Reward function)

When we take decision d , then ω is randomly chosen, and we obtain a reward:

r = ρ(ω, d). (2.1)

For every d ∈ D, the function ρ : Ω ×D → R induces a probability distribution Pd on R.

Pd(B) , P({ω | ρ(ω, d) ∈ B}). (2.2)

Thus, instead of directly choosing some distribution of rewards, we choose a decision d ,
which corresponds to a particular distribution Pd .
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Rewards that depend on the outcome of an experiment Formalisation of the problem setting

UrPdd

(a) The combined decision problem

U

r

ω d

P

(b) The separated deci-
sion problem

Expected utility

EPd
(U) =

∑
r∈R

U(r)Pd(r) =
∑
ω∈Ω

U[ρ(ω, d)]P(ω). (2.3)
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Rewards that depend on the outcome of an experiment Formalisation of the problem setting

Example 3

You are going to work, and it might rain. The forecast said that the probability of rain
(ω1) was 20%. What do you do?

d1: Take the umbrella.

d2: Risk it!

ρ(ω, d) d1 d2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U[ρ(ω, d)] d1 d2
ω1 0 -10
ω2 0 1

EP(U | d) 0 -1.2

Table : Rewards, utilities, expected utility for 20% probability of rain.

.
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Rewards that depend on the outcome of an experiment Statistical estimation

Application to statistical estimation

Example 4 (Voting)

Let us say for example that you wish to estimate the number of votes for different
candidates in an election. The unknown parameters of the problem mainly include: the
percentage of likely voters in the population, the probability that a likely voter is going to
vote for each candidate. One simple way to estimate this is by polling.

The unknown outcome of the experiment ω is called a parameter.
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Rewards that depend on the outcome of an experiment Statistical estimation

Application to statistical estimation

The unknown outcome of the experiment ω is called a parameter.

The set of outcomes Ω is called the parameter space.

We wish to guess a particular value d ∈ D = Ω for the parameter.

ρ(ω, d) measures how close our guess is to the parameter.

Definition 4 (Simplified expected utility of a given decision)

U(P, d) ,
∑
ω∈Ω

U[ρ(ω, d)]P(ω). (2.4)

Definition 5 (Bayes-optimal utility)

U
∗(P) , max

d

U(P, d) (2.5)
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Rewards that depend on the outcome of an experiment Statistical estimation

Voting example

Consider a nation with k political parties.

Let ω = (ω1, . . . , ωk) ∈ [0, 1]k be the voting percentages for each party.

We wish to make a guess d ∈ [0, 1]k .

How should we guess, given a distribution P(ω)?

How should we select U and ρ?
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Let ω = (ω1, . . . , ωk) ∈ [0, 1]k be the voting percentages for each party.

We wish to make a guess d ∈ [0, 1]k .

How should we guess, given a distribution P(ω)?

How should we select U and ρ?

Squared error

We can set ρ(ω, d) = (ω1 − d1, . . . , ωk − dk), our error vector r ∈ [0, 1]k . Then we set
U(r) , −‖r‖2, where ‖r‖2 =

∑
i
|xi |

2.
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Let ω = (ω1, . . . , ωk) ∈ [0, 1]k be the voting percentages for each party.

We wish to make a guess d ∈ [0, 1]k .

How should we guess, given a distribution P(ω)?

How should we select U and ρ?

Squared error

We can set ρ(ω, d) = (ω1 − d1, . . . , ωk − dk), our error vector r ∈ [0, 1]k . Then we set
U(r) , −‖r‖2, where ‖r‖2 =

∑
i
|xi |

2.

Predicting the winner

In that case ρ(ω, d) = 1 if argmax
i
ωi = argmax

i
di and 0 otherwise, and U(r) = r .
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Rewards that depend on the outcome of an experiment Statistical estimation

Example 6 (Squared error)

Consider the case Ω = D = R. Our problem is:

max
d

U(P, d), U(P, d) , −

∫
R

|ω − d |2 dP(ω).
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Consider the case Ω = D = R. Our problem is:

max
d

U(P, d), U(P, d) , −

∫
R

|ω − d |2 dP(ω).
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∂

∂d

∫
R

|ω − d |2 dP(ω) =
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R

∂

∂d
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Example 6 (Squared error)

Consider the case Ω = D = R. Our problem is:

max
d

U(P, d), U(P, d) , −

∫
R

|ω − d |2 dP(ω).

Under some technical assumptions, we can write

∂

∂d

∫
R

|ω − d |2 dP(ω) =

∫
R

∂

∂d
|ω − d |2 dP(ω) (2.6)

= 2

∫
R

(d − ω) dP(ω)

(2.9)
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∫
R

|ω − d |2 dP(ω) =

∫
R

∂

∂d
|ω − d |2 dP(ω) (2.6)

= 2

∫
R

(d − ω) dP(ω) (2.7)

= 2

∫
R

d dP(ω)− 2

∫
R

ω dP(ω)

(2.9)
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Rewards that depend on the outcome of an experiment Statistical estimation

Example 6 (Squared error)

Consider the case Ω = D = R. Our problem is:

max
d

U(P, d), U(P, d) , −

∫
R

|ω − d |2 dP(ω).

Under some technical assumptions, we can write

∂

∂d

∫
R

|ω − d |2 dP(ω) =

∫
R

∂

∂d
|ω − d |2 dP(ω) (2.6)

= 2

∫
R

(d − ω) dP(ω) (2.7)

= 2

∫
R

d dP(ω)− 2

∫
R

ω dP(ω) (2.8)

= 2d − 2E(ω), (2.9)

so the optimal decision is d = E(ω).
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Rewards that depend on the outcome of an experiment Statistical estimation

The utility for quadratic loss
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Figure : Fixed distribution, varying decision. The decision utility under three different
distributions.
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Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

A mixture of distributions

Consider two probability measures P,Q on Ω.
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Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

A mixture of distributions

Consider two probability measures P,Q on Ω.
These define two alternative distributions for ω. For any P,Q and α ∈ [0, 1], we define

Zα = αP + (1− α)Q

to mean the probability measure such that

Zα(A) = αP(A) + (1− α)Q(A)

for any A ∈ FΩ .
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Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

Convexity of the Bayes-optimal utility

Theorem 7

For probability measures P,Q on Ω and any α ∈ [0, 1],

U
∗[Zα] ≤ αU∗(P) + (1− α)U∗(Q), (2.10)

where Zα = αP + (1− α)Q.

Proof.
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Convexity of the Bayes-optimal utility

Theorem 7

For probability measures P,Q on Ω and any α ∈ [0, 1],

U
∗[Zα] ≤ αU∗(P) + (1− α)U∗(Q), (2.10)

where Zα = αP + (1− α)Q.

Proof.

From the definition of the expected utility (2.4), for any decision d ∈ D,

U(Zα, d) = αU(P, d) + (1− α)U(Q, d).
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Convexity of the Bayes-optimal utility

Theorem 7

For probability measures P,Q on Ω and any α ∈ [0, 1],

U
∗[Zα] ≤ αU∗(P) + (1− α)U∗(Q), (2.10)

where Zα = αP + (1− α)Q.

Proof.

From the definition of the expected utility (2.4), for any decision d ∈ D,

U(Zα, d) = αU(P, d) + (1− α)U(Q, d).

Hence, by definition (2.5) of the Bayes-optimal utility:

U
∗(Zα) = max

d∈D

[αU(P, d) + (1− α)U(Q, d)].
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Convexity of the Bayes-optimal utility

Theorem 7

For probability measures P,Q on Ω and any α ∈ [0, 1],

U
∗[Zα] ≤ αU∗(P) + (1− α)U∗(Q), (2.10)

where Zα = αP + (1− α)Q.

Proof.

U
∗(Zα) = max

d∈D

[αU(P, d) + (1− α)U(Q, d)].

Use maxx [f (x) + g(x)] ≤ maxx f (x) + maxx g(x) to bound r.h.s:

U
∗[Zα] ≤ αmax

d∈D

U(P, d) + (1− α)max
d∈D

U(Q, d)
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Convexity of the Bayes-optimal utility

Theorem 7

For probability measures P,Q on Ω and any α ∈ [0, 1],
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∗(Zα) = max
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[αU(P, d) + (1− α)U(Q, d)].

Use maxx [f (x) + g(x)] ≤ maxx f (x) + maxx g(x) to bound r.h.s:

U
∗[Zα] ≤ αmax

d∈D

U(P, d) + (1− α)max
d∈D

U(Q, d)

= αU∗(P) + (1− α)U∗(Q).

Christos Dimitrakakis (Chalmers) Decision Problems 1/11/2013 12 / 18



Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

Convexity of the Bayes utility
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Figure : Fixed decision, varying distribution. The util of a fixed decision is a linear function of P
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Convexity of the Bayes utility
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Figure : The util of a few decisions as P varies. Each decision corresponds to one of these lines.
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Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

Convexity of the Bayes utility
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Figure : For each P, there is at least one decision maximising the util.
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Convexity of the Bayes utility
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Figure : The Bayes util is convex and the maximising decision is tangent to it.
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Convexity of the Bayes utility
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Figure : If we are not very wrong about P, then we are not far from optimal.

Christos Dimitrakakis (Chalmers) Decision Problems 1/11/2013 13 / 18



Rewards that depend on the outcome of an experiment Convexity of the Bayes-optimal utility*

Convexity of the Bayes utility
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Figure : We can approximate the Bayes util by taking the maximum of a finite number of
decisions.
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Decision problems with observations

Only prior information

U

ω

d

ξ

Figure : Statistical decision problem without observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.
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Decision problems with observations

Only prior information

U

ω

d

ξ

Figure : Statistical decision problem without observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.

2 Our utility is U : Ω × D → R.

3 We want to choose d ∈ D, taking into account ξ:

max
d

U(ξ, d) = max
d

∑
ω∈Ω

U(ω, d)ξ(ω).
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Decision problems with observations

Obtaining information

U

ω x

d
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δ

Figure : Statistical decision problem with observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.
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Decision problems with observations

Obtaining information

U

ω x

d

ξ

δ

Figure : Statistical decision problem with observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.

2 Now consider a family of conditional probabilities measures on the observation set S:

F = {Pω | ω ∈ Ω} ,

such that Pω(A) is the probability of A ⊂ S under parameter ω.
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1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.

2 Now consider a family of conditional probabilities measures on the observation set S:

F = {Pω | ω ∈ Ω} ,

such that Pω(A) is the probability of A ⊂ S under parameter ω.

3 Let x ∈ S be a random variable with distribution Pω.

4 Our utility is U : Ω × D → R.

5 We want to choose d ∈ D, taking into account both ξ and the evidence x .
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Obtaining information
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Figure : Statistical decision problem with observations

1 There is an unknown parameter ω ∈ Ω with ω ∼ ξ.

2 Now consider a family of conditional probabilities measures on the observation set S:

F = {Pω | ω ∈ Ω} ,

such that Pω(A) is the probability of A ⊂ S under parameter ω.

3 Let x ∈ S be a random variable with distribution Pω.

4 Our utility is U : Ω × D → R.

5 We want to choose d ∈ D, taking into account both ξ and the evidence x .

6 We want to find a decision function δ : S → D maximising expected utility
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Decision problems with observations

Maximising expected utility a posteriori

Prior probability ξ(ω)
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Decision problems with observations

Maximising expected utility a posteriori

Prior probability ξ(ω)

Observation x .

Posterior probability

ξ(ω | x) =
Pω(x)ξ(ω)∑
ω′ Pω′(x)ξ(ω′)
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Maximising expected utility a posteriori

Prior probability ξ(ω)

Observation x .

Posterior probability

ξ(ω | x) =
Pω(x)ξ(ω)∑
ω′ Pω′(x)ξ(ω′)

Expected utility of decision d under the posterior

Eξ(U | d , x) =
∑
ω∈Ω

U(ω, d)ξ(ω | x)
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Decision problems with observations

Maximising expected utility a posteriori

Prior probability ξ(ω)

Observation x .

Posterior probability

ξ(ω | x) =
Pω(x)ξ(ω)∑
ω′ Pω′(x)ξ(ω′)

Expected utility of decision d under the posterior

Eξ(U | d , x) =
∑
ω∈Ω

U(ω, d)ξ(ω | x)

Bayes decision rule:
δ∗(x) = argmax

d∈D

Eξ(U | d , x).
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Decision problems with observations

Exercise

Abdul Alhazred claims that he is psychic and can always predict a coin toss. Let
P(A) = 2−16 be your prior belief that AA is a psychic.

Abdul bets you 100 CU that he can predict the next four coin tosses. How much are
you willing to bet against that (assuming that you are using a fair coin).

You throw the coin 4 times, and AA guesses correctly all four times. Abdul now bets
you another 100 CU that he can predict the next four coin tosses. Up to how much
would you bet now?

Assumption 1

You use a fair coin, such that the probability of it coming heads is 1/2.

Your utility for money is linear, i.e. U(x) = x for any amount of money x.
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Decision problems with observations

Quick summary

We want to make a decision against an unknown parameter ω.

The Bayes utility is the maximum expected utility, and it is convex with respect to
the distribution of ω.

Our decisions can depend on observations, via a decision function.

We can construct a complete decision function by computing U(ξ, δ) for all decision
functions (normal form).

We can instead wait until we observe x and compute U[ξ(· | x), d ] for all decisions
(extensive form).
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