

Introduction to Lists

(background for lab 1)

Lists

• … are very common in Haskell

• Example list: [1,2,3,4]

• Use : to add an element in front of a list:

• Lists can be created by enumeration:

*Main> 0:[1,2,3]
[0,1,2,3]

*Main> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Some list operations

• From the Data.List module:

reverse :: [a] -> [a]
 -- reverse a list

take :: Int -> [a] -> [a]
 -- (take n) picks the first n elements

(++) :: [a] -> [a] -> [a]
 -- append a list after another

replicate :: Int -> a -> [a]
 -- make a list by replicating an element

[a] is the type of
a list whose

elements have
type a

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html

Some list operations

*Main> reverse [1,2,3]
[3,2,1]

*Main> take 4 [1..10]
[1,2,3,4]

*Main> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

*Main> replicate 5 2
[2,2,2,2,2]

Strings are lists of characters

type String = [Char]

Prelude> 'g' : "apa"
"gapa"

Prelude> "flyg" ++ "plan"
"flygplan"

Prelude> ['A','p','a']
"Apa"

Type synonym
definition

Processing lists
• Lists can be processed using list

comprehension:

squareEach :: [Integer] -> [Integer]
squareEach xs = [x*x | x <- xs]

allCAPS :: String -> String
allCAPS s = [toUpper c | c <- s]

*Main> squareEach [1,2,3]
[1,4,9]

*Main> allCAPS "Chalmers"
"CHALMERS"

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6

