Semaphores (chap. 6)

K.V.S. Prasad
Dept of Computer Science

Chalmer University
26-28 Jan 2014



Questions?

Anything you did not get
Was | too fast/slow?

Have you joined the google group? Found a
ab partner?

_ast chance to talk to a course rep



Plan

Review critical section problem
— First two solutions
— State diagram proofs of correctness

Atomic actions
— Sketch of hardware solutions to CS

Semaphore solution to CS

— State diagram
— Invariant proofs

Invariants



Avoiding bad stories

* |n concurrent programming you often
— Want to cut out unwanted interleavings

e proctype P {knife, fork,eat} in {run P; run P}
— Fine with atomic knife

— But if knife = {loop until knife free; grab knife}
* Then both P’s can emerge from loop at same time

— Making the loop and grab atomic rules out the
unwanted story
 {exit loop; exit loop; grab knife; grab knife}



Atomic actions

* Athing that happens without interruption
— Can be implemented as high priority
e Compare algorithms 2.3 and 2.4
e Slides 2.12 to0 2.17
— 2.3 can guarantee n=2 at the end
— 2.4 cannot
* hardware folk say there is a “race condition”
* We must say what the atomic statements are
— In the book, assignments and boolean conditions
— How to implement these as atomic?



Critical Sections

* The CS problem = avoid the story below
* Preprotocol; Preprotocol; CS; CS
* The CS problem can be solved by

— Test-and-set, Compare-and-swap, ...
* Two things at once: minimal atomic actions

— Or just swap ("exchange” in Alg 3.12, slide 3.23)
* Invariant proof.
 What invariants are
— Help to prove loops correct
— Max example



What are hardware atomic actions?

* Setting a register

* Testing a register

— Is that enough?
— Think about it (or cheat, and read Chap. 3)

e But these are machine instructions

— Semaphores are the software equivalent



Semaphores to solve Critical Sections

 We saw that the CS problem can be solved by

— Test-and-set, Compare-and-swap, ...
* Two things at once: minimal atomic actions

— But these are low level machine instructions
— Semaphores: same trick at language level

* So we expect semaphores to solve CS
— What else can they do?
— What problems in use?
— How do we implement them?



Processes revisited

 We didn’t really say what “waiting” was

— Define it as "blocked for resource”
* If run will only busy-wait

— If not blocked, it is “ready”
* Whether actually running depends on scheduler

— Running -> blocked transition done by process
— Blocked -> ready transition due to external event

e Now see B-Asslide 6.1

* Define "await” as a non-blocking check of
boolean condition



Semaphore definition

Is a pair < value, set of blocked processes>
Initialised to <k, empty>
— k depends on application

* For a binary semaphore, k=1 or 0, and k=1 at first
Two operations. When proc p calls sem S
— Wait (S) =

 if k>0 then k:=k-1 else block p and add it to set
— signal (S)

* If empty set then k:=k+1 else take a g from set and unblock
it

Signal undefined on a binary sem when k=1



Critical Section with semaphore

See alg 6.1 and 6.2 (slides 6.2 through 6.4)

Semaphore is like alg 3.6
— The second attempt at CS without special ops

— There, the problem was

* P checks wantqg

— Finds it false, enters CS,
— but g enters before p can set wantp

We can prevent that by compare-and-swap
Semaphores are high level versions of this



Correct?

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, 92, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in
* Simpler definition of deadlock now

— Both blocked, no hope of release

— No starvation, with fair scheduler

* A wait will be executed
* A blocked process will be released



More on state diagrams

 Mutex: Check that states (CS, CS, ...) do not occur

— Such states are conceivable.

— They just should not be *reachable*

e from the start state
* in a *correctly programmed™* CS routine.

* Deadlock/livelock in a state diagram
— (self-)loops from the pre-protocol state
— Either no escape arc, or escape arcs not enabled.

e Check that conceivable but unreachable states
are accounted for.



Invariants

e Semaphore invariants
—k>=0
— k = k.init + #signals - #waits
— Proof by induction

* |nitially true
* The only changes are by signals and waits



CS correctness via sem invariant

* Let #CS be the number of procs in their CS’s.
— Then #CS+ k=1

* True at start

* Wait decrements k and increments #CS; only one wait
possible before a signal intervenes

* Signal
— Either decrements #CS and increments k
— Or leaves both unchanged

— Since k>=0, #CS <= 1. So mutex.
— If a proc is waiting, k=0. Then #CS=1, so no deadlock.
— No starvation — see book, page 113



Why two proofs?

* The state diagram proof
— Looks at each state
— Will not extend to large systems
e Except with machine aid (model checker)
* The invariant proof

— In effect deals with sets of states
* E.g., all states with one proc is CS satisfy #CS=1

— Better for human proofs of larger systems
— Foretaste of the logical proofs we will see (Ch. 4)



